首页> 外文期刊>Fuzzy Systems, IEEE Transactions on >Learning of Fuzzy Cognitive Maps With Varying Densities Using A Multiobjective Evolutionary Algorithm
【24h】

Learning of Fuzzy Cognitive Maps With Varying Densities Using A Multiobjective Evolutionary Algorithm

机译:多目标进化算法学习密度变化的模糊认知图

获取原文
获取原文并翻译 | 示例

摘要

Fuzzy cognitive maps (FCMs) are cognition fuzzy influence graphs, which are based on fuzzy logic and neural networks. Many automated learning algorithms have been proposed to reconstruct FCMs from data, but most learned maps using such methods are much denser than those constructed by human experts. To this end, we first model the FCM learning problem as a multiobjective optimization problem, and then propose a multiobjective evolutionary algorithm, labeled as MOEA-FCM, to learn FCM models. MOEA-FCM is able to learn FCMs with varying densities at the same time from input historical data, which can provide candidate solutions with different properties for decision makers. In the experiments, the performance of MOEA-FCM is validated on both synthetic and real data with varying sizes and densities. The experimental results demonstrate the efficiency of MOEA-FCM and show that MOEA-FCM can not only reconstruct FCMs with high accuracy without expert knowledge, but also create a diverse Pareto optimal front which consists of FCMs with varying densities. The significance of this study is that decision makers can choose different FCM models provided by MOEA-FCM based on their practical requirements.
机译:模糊认知图(FCM)是基于模糊逻辑和神经网络的认知模糊影响图。已经提出了许多自动学习算法来从数据重建FCM,但是使用这种方法的大多数学习地图比人类专家构建的地图要密集得多。为此,我们首先将FCM学习问题建模为多目标优化问题,然后提出一种称为MOEA-FCM的多目标进化算法来学习FCM模型。 MOEA-FCM能够从输入的历史数据中同时学习密度不同的FCM,这可以为决策者提供具有不同属性的候选解决方案。在实验中,MOEA-FCM的性能已在具有不同大小和密度的合成数据和真实数据上得到验证。实验结果证明了MOEA-FCM的有效性,并且表明MOEA-FCM不仅可以在没有专家知识的情况下高精度地重建FCM,而且可以创建由不同密度的FCM组成的多样的帕累托最优前沿。这项研究的意义在于,决策者可以根据他们的实际需求选择由MOEA-FCM提供的不同FCM模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号