首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy-Model-Based Sampled-Data Control of Chaotic Systems: A Fuzzy Time-Dependent Lyapunov–Krasovskii Functional Approach
【24h】

Fuzzy-Model-Based Sampled-Data Control of Chaotic Systems: A Fuzzy Time-Dependent Lyapunov–Krasovskii Functional Approach

机译:基于模糊模型的混沌系统采样数据控制:基于时间的模糊Lyapunov–Krasovskii函数方法

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the sampled-data stabilization problem for chaotic systems represented by Takagi-Sugeno (T-S) fuzzy models. If the upper bounds for the time derivative of membership functions are available, combining the fuzzy blending for some quadratic functions together with the introduction of some new useful terms, a novel fuzzy time-dependent Lyapunov-Krasovskii functional (LKF) is proposed to fully capture the available characteristics of the actual sampling pattern and membership functions simultaneously. Based on the proposed LKF, a new criterion dependent on the upper bounds for the time derivative of membership functions is presented to guarantee the asymptotic stability of the whole closed-loop system. Moreover, a stability criterion independent of the upper bounds is also provided based on the corresponding common time-dependent LKF. Then, the designed fuzzy sampled-data controller can be synthesized by analyzing the corresponding stabilization conditions. Moreover, a search algorithm is provided to find the optimal tuning parameters. Finally, one practical example of the Lorenz system is given to illustrate that much less conservativeness can be achieved compared with the earlier results by using the corresponding common LKF, and the results can be further improved when adopting the fuzzy time-dependent LKF within large upper bounds.
机译:本文针对以Takagi-Sugeno(T-S)模糊模型为代表的混沌系统的采样数据稳定问题。如果隶属函数时间导数的上限可用,将一些二次函数的模糊混合与一些新的有用项的引入相结合,则提出一种新颖的模糊时间相关的Lyapunov-Krasovskii函数(LKF)以完全捕获实际采样模式的可用特征和隶属函数同时存在。基于提出的LKF,提出了一个隶属函数的时间导数依赖于上限的新准则,以保证整个闭环系统的渐近稳定性。此外,还基于相应的公共时间相关LKF提供了独立于上限的稳定性标准。然后,通过分析相应的稳定条件,可以综合所设计的模糊采样数据控制器。此外,提供了一种搜索算法来查找最佳调整参数。最后,给出了一个Lorenz系统的实际例子,说明通过使用相应的公共LKF与早期的结果相比,保守性要低得多,并且当在较大范围内采用模糊时变LKF时,可以进一步改善结果。界限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号