首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Computing Interval Weights for Incomplete Pairwise-Comparison Matrices of Large Dimension—A Weak-Consistency-Based Approach
【24h】

Computing Interval Weights for Incomplete Pairwise-Comparison Matrices of Large Dimension—A Weak-Consistency-Based Approach

机译:计算不完整的成对比较大型矩阵的区间权重—一种基于弱一致性的方法

获取原文
获取原文并翻译 | 示例

摘要

Multiple-criteria decision making and evaluation problems dealing with a large number of objects are very demanding, particularly when the use of pairwise-comparison (PC) techniques is required. A major drawback arises when it is not possible to obtain all the PCs, due to time or cost limitations, or to split the given problem into smaller subproblems. In such cases, two tools are needed to find acceptable weights of objects: an efficient method for partially filling a pairwise-comparison matrix (PCM) and a suitable method for deriving weights from this incomplete PCM. This paper presents a novel interactive algorithm for large-dimensional problems guided by two main ideas: the sequential optimal choice of the PCs to be performed and the concept of weak consistency. The proposed solution significantly reduces the number of needed PCs by adding information implied by the weak consistency after the input of each PC (providing sets of feasible values for all missing PCs). Interval weights of objects are computed from the resulting incomplete weakly consistent PCM adapting the methodology for calculating fuzzy weights from fuzzy PCMs. The computed weight intervals, thus, cover all possible weakly consistent completions of the incomplete PCM. The algorithm works both with Saaty's PCMs and fuzzy preference relations. The performance of the algorithm is illustrated by a numerical example and a real-life case study. The performed simulation demonstrates that the proposed algorithm is capable of reducing the number of PCs required in PCMs of dimension 15 and greater by more than 60% on average.
机译:处理大量对象的多准则决策和评估问题非常苛刻,尤其是在需要使用成对比较(PC)技术时。当由于时间或成本限制而无法获得所有PC或将给定问题分解为较小的子问题时,会出现主要缺点。在这种情况下,需要两个工具来找到可接受的对象权重:一种用于部分填充成对比较矩阵(PCM)的有效方法,以及一种用于从该不完整PCM得出权重的合适方法。本文提出了一种针对大型问题的新颖的交互式算法,该算法以两个主要思想为指导:要执行的PC的顺序最优选择和弱一致性的概念。所提出的解决方案通过在每台PC输入之后添加弱一致性所隐含的信息来显着减少所需PC的数量(为所有丢失的PC提供可行值集)。根据产生的不完全弱一致性PCM计算对象的间隔权重,并采用从模糊PCM计算模糊权重的方法。因此,计算出的权重间隔涵盖了不完整PCM的所有可能的弱一致性完成。该算法适用于Saaty的PCM和模糊偏好关系。数值示例和实际案例研究说明了该算法的性能。进行的仿真表明,所提出的算法能够将尺寸为15和更大的PCM中所需的PC数量平均减少60%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号