首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Feature-Weighted Possibilistic c-Means Clustering With a Feature-Reduction Framework
【24h】

Feature-Weighted Possibilistic c-Means Clustering With a Feature-Reduction Framework

机译:具有特征减少框架的特征加权可能性C-Meanse群集

获取原文
获取原文并翻译 | 示例

摘要

In 1993, Krishnapuram and Keller proposed possibilistic c-means (PCM) clustering, where the PCM had various extensions in the literature. However, the PCM algorithm with its extensions treats data points under equal importance for features. In real applications, different features in a dataset should take different importance with different weights. In this article, we first propose a feature-weighted PCM (FW-PCM). We then construct a feature-reduction framework. Therefore, we give a feature-weighted possibilistic c-means clustering with a feature-reduction framework, termed as a feature-weighted reduction PCM (FW-R-PCM) algorithm. The proposed FW-R-PCM can improve the clustering performance of PCM by calculating feature weights to identify important features, and so it can consequently eliminate these irrelevant features to reduce feature dimension. Its theoretical behavior and computational complexity are also analyzed. The effectiveness and usefulness of FW-R-PCM are demonstrated through experimental results using synthetic and real datasets, where comparisons of FW-R-PCM with PCM, FW-PCM, and some existing feature-weighted clustering algorithms are also made.
机译:1993年,Krishnapuram和Keller提出了Positibilistic C-Means(PCM)聚类,PCM在文献中有各种扩展。但是,具有其扩展的PCM算法在相同的功能下处理数据点。在实际应用中,数据集中的不同功能应以不同的权重采用不同的重要性。在本文中,我们首先提出了一种功能加权PCM(FW-PCM)。然后,我们构建一个减少功能框架。因此,我们提供具有特征减少框架的特征加权可能性C-ulise集群,称为特征加权减少PCM(FW-R-PCM)算法。所提出的FW-R-PCM可以通过计算特征权重来提高PCM的聚类性能以识别重要特征,因此它可以消除这些无关的功能以减少特征尺寸。还分析了其理论行为和计算复杂性。使用合成和实时数据集的实验结果证明了FW-R-PCM的有效性和有用性,其中还制作了使用PCM,FW-PCM和一些现有的特征加权聚类算法的FW-R-PCM的比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号