首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Quantitative Dominance-Based Neighborhood Rough Sets via Fuzzy Preference Relations
【24h】

Quantitative Dominance-Based Neighborhood Rough Sets via Fuzzy Preference Relations

机译:通过模糊偏好关系的定量优势邻近粗糙集

获取原文
获取原文并翻译 | 示例

摘要

Dominance relations exist extensively in decision-making problems. Dominance-based neighborhood rough sets (DNRS) using fuzzy preference relations (FPRs) are presented in this article to deal with attribute reduction in the large-scale decision-making problems. In this model, FPR is elicited to quantify the dominance-based rough set model, which can efficiently deal with the under-fitting problem of classical dominance-based rough sets. First, by formulating a quantified dominance-based neighborhood relation which satisfies reflexivity, the propositions of the quantified DNRSs are analyzed. Second, we propose approaches to attribute reduction based on upper-approximate and lower-approximate discernibility matrices, respectively. Furthermore, we evaluate that the novel model performs efficiently and effectively in time consumption and space storage by experimental analysis. Finally, combining with parallel computing, we demonstrate that the new model can be used to deal with attribute reduction of large-scale datasets effectively.
机译:优势关系在决策问题中存在广泛存在。本文提出了使用模糊偏好关系(FPRS)的基于优势的邻近粗糙集(DNR),以处理大规模决策问题的属性降低。在该模型中,阐明FPR以量化基于优势的粗糙集模型,可以有效地处理古典优势的粗糙集的拟合问题。首先,通过制定满足反射性的量化优势的邻域关系,分析了定量的DNRS的命题。其次,我们提出了基于上近似和较低近似可辨别矩阵的属性降低的方法。此外,我们评估新颖的模型通过实验分析在时间消耗和空间储存时能够有效且有效地进行。最后,与并行计算结合,我们证明了新模型可用于有效地处理大规模数据集的属性降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号