首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Novel Structure of Actor-Critic Learning Based on an Interval Type-2 TSK Fuzzy Neural Network
【24h】

A Novel Structure of Actor-Critic Learning Based on an Interval Type-2 TSK Fuzzy Neural Network

机译:基于间隔2 TSK模糊神经网络的演员 - 评论家学习的新颖结构

获取原文
获取原文并翻译 | 示例

摘要

In this article, a novel structure of actor-critic learning based on an interval type-2 Takagi-Sugeno-Kang fuzzy neural network (AC-IT2-TSK-FNN) is proposed. The proposed structure consists of two IT2-TSK-FNNs that represent the critic and the actor. Structure and parameter learnings are established for all the rules of the proposed structure. The antecedent and consequent parameters for the critic and actor are updated based on the minimization of the proposed cost function. Optimal values for the learning rates are developed and obtained to achieve stability using Lyapunov theory. The obtained results show the superiority of the proposed structure compared to other existing controllers when applied to nonlinear systems.
机译:在本文中,提出了一种基于间隔-2 Takagi-Sugeno-kang模糊神经网络(AC-IT2-TSK-FNN)的演员 - 评论家学习的新颖结构。所提出的结构由两个IT2-TSK-FNN组成,代表评论家和演员。建立建议结构的所有规则的结构和参数学习。批评者和演员的前所未有的参数是根据拟议的成本函数的最小化而更新的。开发和获得学习率的最佳值以实现利用Lyapunov理论实现稳定性。获得的结果表明,当应用于非线性系统时,与其他现有控制器相比,所提出的结构的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号