首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Multiobjective Fuzzy Portfolio Performance Evaluation Using Data Envelopment Analysis Under Credibilistic Framework
【24h】

Multiobjective Fuzzy Portfolio Performance Evaluation Using Data Envelopment Analysis Under Credibilistic Framework

机译:使用信贷框架数据包络分析的多目标模糊组合性能评估

获取原文
获取原文并翻译 | 示例

摘要

In this article, two different multiobjective fuzzy portfolio selectionmodels are presented. The significant criteria considered for portfolio selection are risk (variance or conditional value at risk), return, liquidity, and entropy. Here, the return of the portfolio is considered to be satisfied by a minimum return threshold constraint. Also, to introduce some degree of diversification in the model, a lower and upper bound constraint on investment in an asset is used along with the capital budget and no short selling constraints. Trapezoidal fuzzy returns are considered to incorporate the inherent uncertainty of the stockmarket, which is handled by using the credibility theory. The weighted sum approach is used to aggregate the objectives and characterize different investor attitudes. Random sample portfolios with progressively increasing sample sizes are generated that obey the constraints of the portfolio models. These random sample portfolios with multiple inputs (risk and entropy) and multiple outputs (return and liquidity) are evaluated in terms of their performance by using data envelopment analysis. Furthermore, a frontier improvement technique existing in the literature is used to rebalance the inefficient random sample portfolios to make them efficient, so that an investor may have more avenues to select efficient portfolios. A detailed numerical illustration with a simulation study using different sample sizes is presented to substantiate the proposed study.
机译:在本文中,提出了两个不同的多目标模糊组合选择模型。考虑对投资组合选择的重大标准是风险(风险方差或有条件价值),返回,流动性和熵。这里,认为投资组合的返回被最小返回阈值约束所满足。此外,在模型中引入某种程度的多样化,与资产投资的较低和上限约束以及资本预算以及不卖空约束。梯形模糊回报被认为是通过使用信誉理论来处理股票市场的固有不确定性。加权和方法用于汇总目标并表征不同的投资者态度。使用逐步增加样本尺寸的随机样本组合,遵守投资组合模型的约束。通过使用数据包络分析,在其性能方面评估具有多输入(风险和熵)和多个输出(返回和流动性)的这些随机样本组合。此外,文献中存在的前沿改进技术用于重新平衡低效的随机样本组合,以使它们有效,因此投资者可能有更多的途径来选择有效的投资组合。提出了一种使用不同样本尺寸的模拟研究的详细数值例证,以证实提出的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号