首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Novel Incremental Algorithms for Attribute Reduction From Dynamic Decision Tables Using Hybrid Filter–Wrapper With Fuzzy Partition Distance
【24h】

Novel Incremental Algorithms for Attribute Reduction From Dynamic Decision Tables Using Hybrid Filter–Wrapper With Fuzzy Partition Distance

机译:使用混合滤波器与模糊分区距离的动态决策表的属性减少的新型增量算法

获取原文
获取原文并翻译 | 示例

摘要

Attribute reduction from decision tables has been much focused in recent years in which the incremental methods of the tradition rough set and extended models are mostly used for adding, removing, or updating the object or attribute set. However, when dealing with the dynamic decision tables, the existing incremental methods do not recalculate information which has been added into the decision table. In this article, we propose some new incremental methods using the hybrid filter-wrapper with fuzzy partition distance on fuzzy rough set. Experimental results indicate that the proposed algorithms decrease significantly the cardinality of reduct as well as achieve higher accuracy than the other filter incremental methods such as IV-FS-FRS-2, IARM, ASS-IAR, IFSA, and IFSD.
机译:近年来,决策表的属性减少了很多重点,其中传统粗糙集和扩展模型的增量方法主要用于添加,删除或更新对象或属性集。但是,在处理动态决策表时,现有的增量方法不会重新计算已添加到决策表中的信息。在本文中,我们提出了一些使用混合滤波器的一些新的增量方法,以模糊粗糙集上的模糊分区距离。实验结果表明,所提出的算法显着降低了减少的基数,并且比IV-FS-FRS-2,IARM,ASS-IAR,IFSA和IFSA和IFSD等其他过滤器增量方法实现更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号