首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Combinatorial Iterative Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set
【24h】

Combinatorial Iterative Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set

机译:用于计算间隔类型2模糊集的质心的组合迭代算法

获取原文
获取原文并翻译 | 示例

摘要

Computing the centroid of an interval type-2 fuzzy set (IT2 FS) is an important type-reduction method. The aim of this paper is to develop a new method to calculate the centroid of an IT2 FS when the problems of centroid computation of an IT2 FS are continuous. For the continuous centroid computation problems, the structures of optimal solutions are strictly proven from mathematics for the first time in this paper. Furthermore, we also prove that the structures of the optimal solutions are unique in the sense of almost everywhere equal, i.e., if there are two optimal solutions, the Lebesgue measure of is equal to 0. Subsequently, a combinatorial iterative (CI) method is proposed to solve the roots of the sufficiently differentiable objective functions. It is proven that the convergence of the proposed iterative method is at least sixth order. Based on the proposed iterative method, two algorithms, called CI algorithms, are devised to compute the centroid of an IT2 FS. The efficiencies of CI algorithms are demonstrated by comparing the continuous Karnik-Mendel algorithms and the Hallye's methods with the CI algorithms through three numerical examples.
机译:计算间隔类型-2模糊集(IT2 FS)的质心是一种重要的减少方法。本文的目的是开发一种新方法,以计算IT2 FS的质心计算的问题,计算IT2 FS的质心。对于连续质心计算问题,本文第一次严格从数学中经过最佳解决方案的结构。此外,我们还证明了最佳解决方案的结构在几乎无处不在的情况下是独一无二的,即,如果有两个最佳解决方案,则Lebesgue测量值等于0。随后,组合迭代(CI)方法是建议解决足够微差的客观函数的根源。据证明,建议的迭代方法的收敛性至少是第六顺序。基于所提出的迭代方法,设计了两个名为CI算法的算法,以计算IT2 FS的质心。通过将连续的Karnik-Mendel算法和Hallye的方法通过三个数值示例进行比较,通过将连续的Karnik-Mendel算法和Hallye的方法进行比较来证明CI算法的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号