首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Maintenance Spare Parts Demand Forecasting for Automobile 4S Shop Considering Weather Data
【24h】

Maintenance Spare Parts Demand Forecasting for Automobile 4S Shop Considering Weather Data

机译:考虑天气数据,维护备件需求预测汽车4S商店

获取原文
获取原文并翻译 | 示例

摘要

Maintenance spare parts demand forecasting is an important foundation of maintenance spare parts inventory control, which is an essential responsibility for managers of an automobile 4S shop. Although the existence of the effect of weather conditions on maintenance spare parts demand has been verified, the study on maintenance spare parts demand forecasting for an automobile 4S shop considering weather data has not been found. In this paper, a novel method is proposed for maintenance spare parts demand forecasting for an automobile 4S shop considering weather data. By taking into account three dimensions of weather data (i.e., temperature, visibility, and slipperiness) and delayed effects of weather conditions on maintenance spare parts demand, a vector of numerical weather data with 30 weather factors is constructed to represent the related weather conditions of a given day. Then, a back propagation (BP) neural network is trained and the weights of the 30 weather factors are determined. Similar historical cases of the target case are extracted, and two forecasting models are respectively trained based on extreme learning machine (ELM) and support vector machines (SVM) using the similar historical cases. The final forecasting model is determined by comparing the fitting precisions of the two forecasting models. The experimental study is conducted based on the real data of an automobile 4S shop. The results show that weather data is critical to maintenance spare parts demand forecasting for an automobile 4S shop, and the extraction of similar historical cases is an effective approach to capture the complex effect mechanism of weather data on maintenance spare parts demand.
机译:维护备件需求预测是维护备件库存控制的重要基础,这对于汽车4S商店的管理人员来说是一项重要责任。虽然已经验证了天气条件对维护备件需求的影响,但尚未发现考虑天气数据的汽车4S商店的维护备件需求预测。本文提出了一种新的方法,用于考虑天气数据的汽车4S商店的维护备件需求预测。通过考虑天气数据的三个维度(即,温度,可见性和光滑)和天气条件对维护备件需求的延迟影响,构建了具有30个天气因素的数值天气数据的向量,以表示相关的天气条件给定的一天。然后,训练反向传播(BP)神经网络,确定了30个天气因子的重量。提取了目标案例的类似历史情况,并分别基于极端学习机(ELM)和支持矢量机(SVM)的两种预测模型,并使用类似的历史情况。通过比较两个预测模型的拟合精度来确定最终预测模型。实验研究是基于汽车4S商店的真实数据进行的。结果表明,天气数据对于维护汽车4S商店的维护需求预测至关重要,并且类似历史案例的提取是捕获维护备件需求的天气数据复杂效果机制的有效方法。

著录项

  • 来源
    《IEEE Transactions on Fuzzy Systems》 |2019年第5期|943-955|共13页
  • 作者单位

    Northeastern Univ Sch Business Adm Dept Informat Management & Decis Sci Shenyang 110167 Liaoning Peoples R China;

    Northeastern Univ Sch Business Adm Dept Informat Management & Decis Sci Shenyang 110167 Liaoning Peoples R China;

    Northeastern Univ Sch Business Adm Dept Informat Management & Decis Sci Shenyang 110167 Liaoning Peoples R China|Northeastern Univ State Key Lab Synthet Automat Proc Ind Shenyang 110167 Liaoning Peoples R China;

    Northeastern Univ Sch Business Adm Dept Informat Management & Decis Sci Shenyang 110167 Liaoning Peoples R China;

    Northeastern Univ Sch Business Adm Dept Informat Management & Decis Sci Shenyang 110167 Liaoning Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Demand forecasting; factor weight determination; maintenance spare parts; similar historical case extraction; weather data;

    机译:需求预测;因子重量测定;维护备件;类似的历史案例提取;天气数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号