首页> 外文期刊>IEEE Transactions on Fuzzy Systems >A Variable Neighborhood Search Algorithm for Solving Fuzzy Number Linear Programming Problems Using Modified Kerre's Method
【24h】

A Variable Neighborhood Search Algorithm for Solving Fuzzy Number Linear Programming Problems Using Modified Kerre's Method

机译:改进的Kerre方法求解模糊数线性规划问题的可变邻域搜索算法

获取原文
获取原文并翻译 | 示例

摘要

To solve a fuzzy linear program, we need to compare fuzzy numbers. Here, we make use of our recently proposed modified Kerre's method for comparison of LR fuzzy numbers. We give some new results on LR fuzzy numbers and show that to compare two LR fuzzy numbers, it is not necessary to compute the fuzzy maximum of two numbers directly. Using the modified Kerre's method, we propose a new variable neighborhood search algorithm for solving fuzzy number linear programming problems. In our algorithm, the local search is defined based on descent directions, which are found by solving four crisp mathematical programming problems. In several methods, a fuzzy optimization problem is converted to a crisp problem but in our proposed method, using our modified Kerre's method, the fuzzy optimization problem is solved directly, without changing it to a crisp program. We provide examples to compare the performance of our proposed algorithm to other available methods. We show the effectiveness of our proposed algorithm by using the nonparametric statistical sign test.
机译:为了求解模糊线性程序,我们需要比较模糊数。在这里,我们利用我们最近提出的改进的Kerre方法来比较LR模糊数。我们给出了关于LR模糊数的一些新结果,并表明,要比较两个LR模糊数,不必直接计算两个数的模糊最大值。使用改进的Kerre方法,我们提出了一种新的变量邻域搜索算法来解决模糊数线性规划问题。在我们的算法中,局部搜索是根据下降方向定义的,该方向是通过解决四个清晰的数学编程问题找到的。在几种方法中,模糊优化问题可以转换为清晰的问题,但是在我们提出的方法中,使用改进的Kerre方法,可以直接解决模糊优化问题,而无需将其更改为清晰的程序。我们提供了一些示例,以将我们提出的算法与其他可用方法的性能进行比较。我们通过使用非参数统计符号检验证明了我们提出的算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号