首页> 外文期刊>IEEE Transactions on Fuzzy Systems >AFSNN: A Classification Algorithm Using Axiomatic Fuzzy Sets and Neural Networks
【24h】

AFSNN: A Classification Algorithm Using Axiomatic Fuzzy Sets and Neural Networks

机译:AFSNN:使用公理模糊集和神经网络的分类算法

获取原文
获取原文并翻译 | 示例

摘要

In this study, we present a comprehensible classifier AFSNN that embeds a new type of coherence membership function, which builds upon the theoretical findings of the axiomatic fuzzy set (AFS) theory into the hidden layer of neural network with random weights (NNRWs). Borrowing from the idea of NNRWs that employs the random initialization technique, the relation among attributes, simple concepts, and complex concepts are randomly determined. Complex concepts are generated through the combination of randomly selected simple concepts by AFS logic operation. The output weights of NNRWs are utilized to evaluate the confidence of each complex concept for every target class, which means that the feasibility of complex concepts for every class is determined analytically rather than through the tuning parameters of constraint conditions such as in conventional AFS-based classifiers. For the proposed method, compared to other neural-network-based classification methods, the fuzzy descriptions generated from complex concepts in hidden layer make classification result human understandable. We have experimented with several benchmark datasets and compared the results with other neural network-based classifiers. We show that our method outperforms Ensemble, EvRBFN, NNEP, LVQ, and iRProp+ in the seven out of ten datasets. The results show that the performance of AFSNN is competitive in terms of classification accuracy and the network shows a distinctive capability of providing explicit knowledge in the form of linguistic description.
机译:在这项研究中,我们提出了一种可理解的分类器AFSNN,该分类器将一种新型的相干隶属度函数嵌入其中,该函数基于公理模糊集(AFS)理论的理论发现,将其引入具有随机权重(NNRW)的神经网络的隐藏层中。借用采用随机初始化技术的NNRW的思想,可以随机确定属性,简单概念和复杂概念之间的关系。复杂概念是通过AFS逻辑运算通过随机选择的简单概念的组合生成的。 NNRW的输出权重用于评估每个目标类别的每个复杂概念的置信度,这意味着每个类别的复杂概念的可行性是通过分析确定的,而不是通过诸如传统基于AFS的约束条件的调整参数来确定的。分类器。对于提出的方法,与其他基于神经网络的分类方法相比,隐藏层中复杂概念产生的模糊描述使分类结果易于理解。我们已经试验了几个基准数据集,并将结果与​​其他基于神经网络的分类器进行了比较。我们表明,在十个数据集中的七个数据集中,我们的方法优于Ensemble,EvRBFN,NNEP,LVQ和iRProp +。结果表明,在分类精度方面,AFSNN的性能具有竞争力,并且该网络具有以语言描述形式提供显式知识的独特能力。

著录项

  • 来源
    《IEEE Transactions on Fuzzy Systems》 |2018年第5期|3151-3163|共13页
  • 作者单位

    Dalian Key Lab of Digital Technology for National Culture, Dalian Nationalities University, Dalian, China;

    Research Center of Information and Control, Dalian University of Technology, Dalian, China;

    Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada;

    Research Center of Information and Control, Dalian University of Technology, Dalian, China;

    Institute of System Science, Northeastern University, Shenyang, China;

    Institute of System Science, Northeastern University, Shenyang, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Artificial neural networks; Fuzzy sets; Semantics; Smart phones; Electronic mail;

    机译:人工神经网络;模糊集;语义;智能手机;电子邮件;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号