首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Hidden Markov Models Based Approaches to Long-Term Prediction for Granular Time Series
【24h】

Hidden Markov Models Based Approaches to Long-Term Prediction for Granular Time Series

机译:基于隐马尔可夫模型的颗粒时间序列长期预测方法

获取原文
获取原文并翻译 | 示例

摘要

In time series forecasting, a challenging and important task is to realize long-term forecasting that is both accurate and transparent. In this study, we propose a long-term prediction approach by transforming the original numerical data into some meaningful and interpretable entities following the principle of justifiable granularity. The obtained sequences exhibiting sound semantics may have different lengths, which bring some difficulties when carrying out predictions. To equalize these temporal sequences, we propose to adjust their lengths by involving the dynamic time warping (DTW) distance. Two theorems are included to ensure the correctness of the proposed equalization approach. Finally, we exploit hidden Markov models (HMM) to derive the relations existing in the granular time series. A series of experiments using publicly available data are conducted to assess the performance of the proposed prediction method. The comparative analysis demonstrates the performance of the prediction delivered by the proposed model.
机译:在时间序列预测中,一项具有挑战性且重要的任务是实现既准确又透明的长期预测。在这项研究中,我们提出了一种长期的预测方法,即根据合理粒度的原则将原始数值数据转换为一些有意义且可解释的实体。获得的展现出合理语义的序列可能具有不同的长度,这在进行预测时带来一些困难。为了均衡这些时间序列,我们建议通过涉及动态时间规整(DTW)距离来调整它们的长度。包括两个定理,以确保所提出的均衡方法的正确性。最后,我们利用隐马尔可夫模型(HMM)来导出粒度时间序列中存在的关系。使用公开可用数据进行了一系列实验,以评估所提出的预测方法的性能。对比分析证明了所提出模型的预测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号