首页> 外文期刊>IEEE Transactions on Fuzzy Systems >Fuzzy Superpixels for Polarimetric SAR Images Classification
【24h】

Fuzzy Superpixels for Polarimetric SAR Images Classification

机译:极化SAR图像分类的模糊超像素

获取原文
获取原文并翻译 | 示例

摘要

Superpixels technique has drawn much attention in computer vision applications. Each superpixels algorithm has its own advantages. Selecting a more appropriate superpixels algorithm for a specific application can improve the performance of the application. In the last few years, superpixels are widely used in polarimetric synthetic aperture radar (PolSAR) image classification. However, no superpixel algorithm is especially designed for image classification. It is believed that both mixed superpixels and pure superpixels exist in an image. Nevertheless, mixed superpixels have negative effects on classification accuracy. Thus, it is necessary to generate superpixels containing as few mixed superpixels as possible for image classification. In this paper, first, a novel superpixels concept, named fuzzy superpixels, is proposed for reducing the generation of mixed superpixels. In fuzzy superpixels, not all pixels are assigned to a corresponding superpixel. We would rather ignore the pixels than assigning them to improper superpixels. Second, a new algorithm, named FuzzyS (FS), is proposed to generate fuzzy superpixels for PolSAR image classification. Three PolSAR images are used to verify the effect of the proposed FS algorithm. Experimental results demonstrate the superiority of the proposed FS algorithm over several state-of-the-art superpixels algorithms.
机译:超像素技术已在计算机视觉应用中引起了很多关注。每个超像素算法都有自己的优势。为特定应用程序选择更合适的超像素算法可以提高应用程序的性能。在最近几年中,超像素被广泛用于极化合成孔径雷达(PolSAR)图像分类中。但是,没有为像素分类专门设计超像素算法。可以相信,图像中同时存在混合超像素和纯超像素。然而,混合的超像素对分类精度有负面影响。因此,为了图像分类,必须产生包含尽可能少的混合超像素的超像素。在本文中,首先,提出了一种新的超像素概念,即模糊超像素,以减少混合超像素的产生。在模糊超像素中,并非所有像素都分配给相应的超像素。我们宁愿忽略像素,也不愿将它们分配给不合适的超像素。其次,提出了一种名为FuzzyS(FS)的新算法来生成模糊超像素以进行PolSAR图像分类。使用三个PolSAR图像来验证所提出的FS算法的效果。实验结果证明了所提出的FS算法优于几种最新的超像素算法。

著录项

  • 来源
    《IEEE Transactions on Fuzzy Systems》 |2018年第5期|2846-2860|共15页
  • 作者单位

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi’an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi’an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi’an, China;

    Centre of Excellence for Research in Computational Intelligence and Applications, School of Computer Science, University of Birmingham, Birmingham, U.K.;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi’an, China;

    Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, School of Artificial Intelligence, International Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of Intelligent Perception and Computation, Xidian University, Xi’an, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Clustering algorithms; Image segmentation; Computer vision; Image color analysis; Classification algorithms; Polarimetric synthetic aperture radar;

    机译:聚类算法图像分割计算机视觉图像色彩分析分类算法折光合成孔径雷达;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号