首页> 外文期刊>IEEE transactions on evolutionary computation >Solving constraint satisfaction problems using hybrid evolutionary search
【24h】

Solving constraint satisfaction problems using hybrid evolutionary search

机译:使用混合进化搜索解决约束满足问题

获取原文
获取原文并翻译 | 示例

摘要

We combine the concept of evolutionary search with the systematic search concepts of arc revision and hill climbing to form a hybrid system that quickly finds solutions to static and dynamic constraint satisfaction problems (CSPs). Furthermore, we present the results of two experiments. In the first experiment, we show that our evolutionary hybrid outperforms a well-known hill climber, the iterative descent method (IDM), on a test suite of 750 randomly generated static CSPs. These results show the existence of a "mushy region" which contains a phase transition between CSPs that are based on constraint networks that have one or more solutions and those based on networks that have no solution. In the second experiment, we use a test suite of 250 additional randomly generated CSPs to compare two approaches for solving CSPs. In the first method, all the constraints of a CSP are known by the hybrid at run-time. We refer to this method as the static method for solving CSPs. In the second method, only half of the constraints of a CSPs are known at run-time. Each time that our hybrid system discovers a solution that satisfies all of the constraints of the current network, one additional constraint is added. This process of incrementally adding constraints is continued until all the constraints of a CSP are known by the algorithm or until the maximum number of individuals has been created. We refer to this second method as the dynamic method for solving CSPs. Our results show hybrid evolutionary search performs exceptionally well in the presence of dynamic (incremental) constraints, then also illuminate a potential hazard with solving dynamic CSPs.
机译:我们将进化搜索的概念与弧修正和爬坡的系统搜索概念相结合,形成了一个混合系统,可以快速找到静态和动态约束满足问题(CSP)的解决方案。此外,我们提出了两个实验的结果。在第一个实验中,我们展示了我们的进化混合动力系统在包含750个随机生成的静态CSP的测试套件上胜过了著名的爬山者迭代下降法(IDM)。这些结果表明存在一个“糊状区域”,该区域包含基于具有一个或多个解决方案的约束网络的CSP与基于不具有解决方案的网络的CSP之间的相变。在第二个实验中,我们使用包含250个其他随机生成的CSP的测试套件来比较两种解决CSP的方法。在第一种方法中,混合动力在运行时知道CSP的所有约束。我们将此方法称为解决CSP的静态方法。在第二种方法中,在运行时仅知道CSP约束的一半。每当我们的混合系统发现满足当前网络所有约束的解决方案时,都会添加一个附加约束。继续逐步增加约束条件,直到算法知道CSP的所有约束条件或创建了最大数量的个体为止。我们将第二种方法称为解决CSP的动态方法。我们的结果表明,在存在动态(增量)约束的情况下,混合进化搜索的性能异常出色,然后通过解决动态CSP来阐明潜在的危害。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号