首页> 外文期刊>IEEE transactions on evolutionary computation >A new evolutionary approach to the degree-constrained minimum spanning tree problem
【24h】

A new evolutionary approach to the degree-constrained minimum spanning tree problem

机译:求解度约束最小生成树问题的新进化方法

获取原文
获取原文并翻译 | 示例

摘要

Finding the degree-constrained minimum spanning tree (d-MST) of a graph is a well-studied NP-hard problem of importance in communications network design and other network-related problems. In this paper we describe some previously proposed algorithms for solving the problem, and then introduce a novel tree construction algorithm called the randomized primal method (RPM) which builds degree-constrained trees of low cost from solution vectors taken as input. RPM is applied in three stochastic iterative search methods: simulated annealing, multistart hillclimbing, and a genetic algorithm. While other researchers have mainly concentrated on finding spanning trees in Euclidean graphs, we consider the more general case of random graph problems. We describe two random graph generators which produce particularly challenging d-MST problems. On these and other problems we find that the genetic algorithm employing RPM outperforms simulated annealing and multistart hillclimbing. Our experimental results provide strong evidence that the genetic algorithm employing RPM finds significantly lower-cost solutions to random graph d-MST problems than rival methods.
机译:找到图的度约束最小生成树(d-MST)是一个经过充分研究的NP难题,在通信网络设计和其他与网络相关的问题中具有重要意义。在本文中,我们描述了一些先前提出的用于解决该问题的算法,然后介绍了一种新颖的树构建算法,称为随机原始方法(RPM),该算法从作为输入的解向量中构建低成本的度约束树。 RPM用于三种随机迭代搜索方法:模拟退火,多起点爬坡和遗传算法。虽然其他研究人员主要致力于在欧几里得图中查找生成树,但我们考虑了随机图问题的更一般情况。我们描述了两个随机图生成器,它们会产生特别具有挑战性的d-MST问题。在这些和其他问题上,我们发现采用RPM的遗传算法优于模拟退火和多起点爬坡。我们的实验结果提供了有力的证据,表明采用RPM的遗传算法比随机方法找到了成本更低的随机图d-MST问题解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号