首页> 外文期刊>IEEE transactions on evolutionary computation >Elitism-based compact genetic algorithms
【24h】

Elitism-based compact genetic algorithms

机译:基于精英的紧凑遗传算法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes two elitism-based compact genetic algorithms (cGAs)-persistent elitist compact genetic algorithm (pe-cGA), and nonpersistent elitist compact genetic algorithm (ne-cGA). The aim is to design efficient cGAs by treating them as estimation of distribution algorithms (EDAs) for solving difficult optimization problems without compromising on memory and computation costs. The idea is to deal with issues connected with lack of memory by allowing a selection pressure that is high enough to offset the disruptive effect of uniform crossover. The pe-cGA finds a near optimal solution (i.e., a winner) that is maintained as long as other solutions generated from probability vectors are no better. The ne-cGA further improves the performance of the pe-cGA by avoiding strong elitism that may lead to premature convergence. It also maintains genetic diversity. This paper also proposes an analytic model for investigating convergence enhancement.
机译:本文介绍了两种基于精英的紧凑遗传算法(cGA)-持久的精英紧凑遗传算法(pe-cGA)和非持久的精英紧凑遗传算法(ne-cGA)。目的是通过将有效的cGA视为分布算法(EDA)的评估来设计有效的cGA,以解决困难的优化问题而又不损害内存和计算成本。这个想法是通过允许足够高的选择压力来抵消均匀交叉的破坏性影响来解决与内存不足有关的问题。 pe-cGA会找到一个接近最佳的解决方案(即获胜者),只要从概率向量生成的其他解决方案都没有更好的解决方案即可。 ne-cGA避免了可能导致过早收敛的强烈精英主义,从而进一步提高了pe-cGA的性能。它还保持了遗传多样性。本文还提出了一种用于研究收敛性增强的分析模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号