首页> 外文期刊>IEEE transactions on evolutionary computation >Training Distributed GP Ensemble With a Selective Algorithm Based on Clustering and Pruning for Pattern Classification
【24h】

Training Distributed GP Ensemble With a Selective Algorithm Based on Clustering and Pruning for Pattern Classification

机译:基于聚类和修剪的选择性模式训练分布式GP集成模式分类。

获取原文
获取原文并翻译 | 示例

摘要

A boosting algorithm based on cellular genetic programming (GP) to build an ensemble of predictors is proposed. The method evolves a population of trees for a fixed number of rounds and, after each round, it chooses the predictors to include in the ensemble by applying a clustering algorithm to the population of classifiers. Clustering the population allows the selection of the most diverse and fittest trees that best contribute to improve classification accuracy. The method proposed runs on a distributed hybrid environment that combines the island and cellular models of parallel GP. The combination of the two models provides an efficient implementation of distributed GP, and, at the same time, the generation of low sized and accurate decision trees. The large amount of memory required to store the ensemble affects the performance of the method. This paper shows that, by applying suitable pruning strategies, it is possible to select a subset of the classifiers without increasing misclassification errors; indeed for some data sets, for up to 30% of pruning, ensemble accuracy increases. Experimental results show that the combination of clustering and pruning enhances classification accuracy of the ensemble approach.
机译:提出了一种基于细胞遗传规划(GP)的预测算法集合增强算法。该方法将树木的种群进化为固定的轮数,并且在每轮之后,通过将聚类算法应用于分类器种群,选择要包含在集合中的预测变量。对种群进行聚类可以选择最多样化和最适合的树,这些树最有助于提高分类准确性。提出的方法在分布式混合环境中运行,该环境结合了并行GP的孤岛模型和蜂窝模型。两种模型的组合提供了分布式GP的有效实现,同时还提供了小尺寸和准确的决策树。存储集合所需的大量内存会影响该方法的性能。本文表明,通过应用适当的修剪策略,可以选择分类器的子集而不会增加错误分类的错误;确实,对于某些数据集,对于高达30%的修剪,合奏精度会提高。实验结果表明,聚类和修剪相结合可以提高集成方法的分类精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号