首页> 外文期刊>Evolutionary Computation, IEEE Transactions on >Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior
【24h】

Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior

机译:群组搜寻最佳化工具:动物搜寻行为启发的最佳化算法

获取原文
获取原文并翻译 | 示例

摘要

Nature-inspired optimization algorithms, notably evolutionary algorithms (EAs), have been widely used to solve various scientific and engineering problems because of to their simplicity and flexibility. Here we report a novel optimization algorithm, group search optimizer (GSO), which is inspired by animal behavior, especially animal searching behavior. The framework is mainly based on the producer-scrounger model, which assumes that group members search either for “finding” (producer) or for “joining” (scrounger) opportunities. Based on this framework, concepts from animal searching behavior, e.g., animal scanning mechanisms, are employed metaphorically to design optimum searching strategies for solving continuous optimization problems. When tested against benchmark functions, in low and high dimensions, the GSO algorithm has competitive performance to other EAs in terms of accuracy and convergence speed, especially on high-dimensional multimodal problems. The GSO algorithm is also applied to train artificial neural networks. The promising results on three real-world benchmark problems show the applicability of GSO for problem solving.
机译:受自然启发的优化算法,尤其是进化算法(EA),由于其简单性和灵活性而被广泛用于解决各种科学和工程问题。在这里,我们报告一种新颖的优化算法,即组搜索优化器(GSO),该算法受动物行为,尤其是动物搜索行为的启发。该框架主要基于生产者-补充者模型,该模型假定小组成员搜索“寻找”(生产者)或“加入”(补充者)机会。在此框架的基础上,隐喻地采用了来自动物搜索行为的概念(例如动物扫描机制)来设计用于解决连续优化问题的最佳搜索策略。在低基准和高基准上对基准函数进行测试时,GSO算法在准确性和收敛速度方面,特别是在高维多峰问题上,具有与其他EA竞争的性能。 GSO算法也被应用于训练人工神经网络。在三个现实世界基准问题上的有希望的结果证明了GSO在解决问题上的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号