首页> 外文期刊>IEEE transactions on evolutionary computation >Scaling Up Estimation of Distribution Algorithms for Continuous Optimization
【24h】

Scaling Up Estimation of Distribution Algorithms for Continuous Optimization

机译:逐步优化分配算法的估计

获取原文
获取原文并翻译 | 示例
           

摘要

Since estimation of distribution algorithms (EDAs) were proposed, many attempts have been made to improve EDAs' performance in the context of global optimization. So far, the studies or applications of multivariate probabilistic model-based EDAs in continuous domain are still mostly restricted to low-dimensional problems. Traditional EDAs have difficulties in solving higher dimensional problems because of the curse of dimensionality and rapidly increasing computational costs. However, scaling up continuous EDAs for large-scale optimization is still necessary, which is supported by the distinctive feature of EDAs: because a probabilistic model is explicitly estimated, from the learned model one can discover useful properties of the problem. Besides obtaining a good solution, understanding of the problem structure can be of great benefit, especially for black box optimization. We propose a novel EDA framework with model complexity control (EDA-MCC) to scale up continuous EDAs. By employing weakly dependent variable identification and subspace modeling, EDA-MCC shows significantly better performance than traditional EDAs on high-dimensional problems. Moreover, the computational cost and the requirement of large population sizes can be reduced in EDA-MCC. In addition to being able to find a good solution, EDA-MCC can also provide useful problem structure characterizations. EDA-MCC is the first successful instance of multivariate model-based EDAs that can be effectively applied to a general class of up to 500-D problems. It also outperforms some newly developed algorithms designed specifically for large-scale optimization. In order to understand the strengths and weaknesses of EDA-MCC, we have carried out extensive computational studies. Our results have revealed when EDA-MCC is likely to outperform others and on what kind of benchmark functions.
机译:自从提出了估计分布算法(EDA)以来,已经进行了许多尝试来在全局优化的情况下提高EDA的性能。到目前为止,在连续域中基于多元概率模型的EDA的研究或应用仍主要限于低维问题。由于尺寸的诅咒和快速增加的计算成本,传统的EDA很难解决更高尺寸的问题。但是,仍然需要按比例放大连续EDA以进行大规模优化,这由EDA的独特功能所支持:由于显式估计了概率模型,因此从学习的模型中可以发现问题的有用属性。除了获得良好的解决方案之外,对问题结构的理解可能会带来巨大的好处,尤其是对于黑盒优化而言。我们提出了一种具有模型复杂度控制(EDA-MCC)的新颖EDA框架,以扩大连续EDA的规模。通过使用弱相关变量识别和子空间建模,EDA-MCC在高维问题上表现出比传统EDA更好的性能。而且,在EDA-MCC中可以减少计算成本和大量人口的需求。除了能够找到一个好的解决方案之外,EDA-MCC还可以提供有用的问题结构特征。 EDA-MCC是基于多元模型的EDA的第一个成功实例,可以有效地应用于最多500-D问题的一般类别。它也胜过一些专门为大规模优化而设计的新开发算法。为了了解EDA-MCC的优缺点,我们进行了广泛的计算研究。我们的结果表明,何时EDA-MCC可能胜过其他公司,以及在什么样的基准功能上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号