首页> 外文期刊>IEEE transactions on evolutionary computation >Multiobjective Metaheuristics for Traffic Grooming in Optical Networks
【24h】

Multiobjective Metaheuristics for Traffic Grooming in Optical Networks

机译:光网络中用于流量梳理的多目标元启发法

获取原文
获取原文并翻译 | 示例

摘要

Currently, wavelength division multiplexing technology is widely used for exploiting the huge bandwidth of optical networks. It allows simultaneous transmission of traffic on many nonoverlapping channels (wavelengths). These channels support traffic demands in the gigabits per second (Gb/s) range; however, since the majority of devices or applications only require a bandwidth of megabits per second (Mb/s), this is a waste of bandwidth. This problem is efficiently solved by multiplexing a number of low-speed traffic demands (Mb/s) onto a high-speed wavelength channel (Gb/s). This is known as the traffic grooming problem. Since traffic grooming is an NP-hard problem, in this paper, we propose two novel multiobjective evolutionary algorithms for solving it. The selected algorithms are multiobjective variants of the standard differential evolution (DEPT) and variable neighborhood search. With the aim of ensuring the performance of our proposals, we have made comparisons with the well-known fast Nondominated Sort Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm 2, and other approaches published in the literature. After performing diverse comparisons, we can conclude that our novel approaches obtain promising results, highlighting in particular the performance of the DEPT algorithm.
机译:当前,波分复用技术被广泛用于开发光网络的巨大带宽。它允许在许多不重叠的通道(波长)上同时传输流量。这些通道支持每秒千兆比特(Gb / s)范围内的流量需求。但是,由于大多数设备或应用程序仅需要每秒兆位(Mb / s)的带宽,因此浪费带宽。通过将多个低速流量需求(Mb / s)多路复用到高速波长信道(Gb / s)上,可以有效解决此问题。这被称为交通疏导问题。由于交通疏导是一个NP难题,本文提出了两种新颖的多目标进化算法来解决。选择的算法是标准差分进化(DEPT)和变量邻域搜索的多目标变体。为了确保我们的建议的执行效果,我们与著名的快速非支配排序遗传算法(NSGA-II),强度帕累托进化算法2以及文献中发表的其他方法进行了比较。在进行了各种比较之后,我们可以得出结论,我们的新颖方法获得了可喜的结果,尤其突出了DEPT算法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号