首页> 外文期刊>IEEE transactions on evolutionary computation >Automatic Design of Scheduling Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming
【24h】

Automatic Design of Scheduling Policies for Dynamic Multi-objective Job Shop Scheduling via Cooperative Coevolution Genetic Programming

机译:协同协同进化遗传算法在动态多目标作业车间调度中的调度策略自动设计

获取原文
获取原文并翻译 | 示例

摘要

A scheduling policy strongly influences the performance of a manufacturing system. However, the design of an effective scheduling policy is complicated and time consuming due to the complexity of each scheduling decision, as well as the interactions among these decisions. This paper develops four new multi-objective genetic programming-based hyperheuristic (MO-GPHH) methods for automatic design of scheduling policies, including dispatching rules and due-date assignment rules in job shop environments. In addition to using three existing search strategies, nondominated sorting genetic algorithm II, strength Pareto evolutionary algorithm 2, and harmonic distance-based multi-objective evolutionary algorithm, to develop new MO-GPHH methods, a new approach called diversified multi-objective cooperative evolution (DMOCC) is also proposed. The novelty of these MO-GPHH methods is that they are able to handle multiple scheduling decisions simultaneously. The experimental results show that the evolved Pareto fronts represent effective scheduling policies that can dominate scheduling policies from combinations of existing dispatching rules with dynamic/regression-based due-date assignment rules. The evolved scheduling policies also show dominating performance on unseen simulation scenarios with different shop settings. In addition, the uniformity of the scheduling policies obtained from the proposed method of DMOCC is better than those evolved by other evolutionary approaches.
机译:调度策略会严重影响制造系统的性能。但是,由于每个调度决策的复杂性以及这些决策之间的相互作用,有效的调度策略的设计既复杂又耗时。本文开发了四种新的基于多目标遗传规划的超启发式(MO-GPHH)方法,用于自动设计调度策略,包括作业车间环境中的调度规则和到期日分配规则。除了使用现有的三种搜索策略(非支配排序遗传算法II,强度帕累托进化算法2和基于谐波距离的多目标进化算法)之外,还开发了新的MO-GPHH方法,一种称为多元多目标合作进化的新方法(DMOCC)也被提出。这些MO-GPHH方法的新颖之处在于它们能够同时处理多个调度决策。实验结果表明,演化后的Pareto前沿表示有效的调度策略,该策略可以从现有调度规则与基于动态/回归的到期日分配规则的组合中控制调度策略。不断发展的调度策略还显示了在不同车间设置的看不见的模拟场景下的主要性能。此外,从DMOCC提出的方法获得的调度策略的一致性要好于其他进化方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号