首页> 外文期刊>IEEE transactions on evolutionary computation >An Enhanced Genetic Algorithm for Ab Initio Protein Structure Prediction
【24h】

An Enhanced Genetic Algorithm for Ab Initio Protein Structure Prediction

机译:用于从头算蛋白质结构预测的增强遗传算法

获取原文
获取原文并翻译 | 示例

摘要

In-vitro methods for protein structure determination are time-consuming, cost-intensive, and failure-prone. Because of these expenses, alternative computer-based predictive methods have emerged. Predicting a protein's 3-D structure from only its amino acid sequence-also known as ab initio protein structure prediction (PSP)-is computationally demanding because the search space is astronomically large and energy models are extremely complex. Some successes have been achieved in predictive methods but these are limited to small sized proteins (around 100 amino acids); thus, developing efficient algorithms, reducing the search space, and designing effective search guidance heuristics are necessary to study large sized proteins. An on-lattice model can be a better ground for rapidly developing and measuring the performance of a new algorithm, and hence we consider this model for larger proteins (>150 amino acids) to enhance the genetic algorithms (GAs) framework. In this paper, we formulate PSP as a combinatorial optimization problem that uses 3-D face-centered-cubic lattice coordinates to reduce the search space and hydrophobic-polar energy model to guide the search. The whole optimization process is controlled by an enhanced GA framework with four enhanced features: 1) an exhaustive generation approach to diversify the search; 2) a novel hydrophobic core-directed macro-mutation operator to intensify the search; 3) a per-generation duplication elimination strategy to prevent early convergence; and 4) a random-walk technique to recover from stagnation. On a set of standard benchmark proteins, our algorithm significantly outperforms state-of-the-art algorithms. We also experimentally show that our algorithm is robust enough to produce very similar results regardless of different parameter settings.
机译:用于蛋白质结构确定的体外方法耗时,成本密集且容易失败。由于这些费用,出现了替代的基于计算机的预测方法。仅从氨基酸序列预测蛋白质的3-D结构(也称为从头算蛋白质结构预测(PSP))在计算上就很困难,因为搜索空间在天文上是很大的,并且能量模型非常复杂。在预测方法上已经取得了一些成功,但仅限于小型蛋白质(约100个氨基酸)。因此,研究大型蛋白质需要开发有效的算法,减少搜索空间并设计有效的搜索指导启发法。晶格模型可以为快速开发和测量新算法的性能提供更好的基础,因此,我们认为此模型适用于较大的蛋白质(> 150个氨基酸)以增强遗传算法(GA)框架。在本文中,我们将PSP公式化为组合优化问题,该问题使用3-D以面心为中心的立方晶格坐标来减小搜索空间,并使用疏水极性能量模型来指导搜索。整个优化过程由具有四个增强功能的增强型GA框架控制:1)详尽的生成方法以使搜索多样化。 2)新颖的疏水核心定向的宏突变算子,以增强搜索; 3)每代复制消除策略,以防止早期收敛; 4)从停滞中恢复过来的随机行走技术。在一组标准基准蛋白质上,我们的算法大大优于最新算法。我们还通过实验表明,无论参数设置如何,我们的算法都足够健壮,可以产生非常相似的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号