首页> 外文期刊>IEEE transactions on evolutionary computation >Genetic Programming With Image-Related Operators and a Flexible Program Structure for Feature Learning in Image Classification
【24h】

Genetic Programming With Image-Related Operators and a Flexible Program Structure for Feature Learning in Image Classification

机译:具有图像相关操作员的遗传编程和图像分类中特征学习的灵活程序结构

获取原文
获取原文并翻译 | 示例

摘要

Feature extraction is essential for solving image classification by transforming low-level pixel values into high-level features. However, extracting effective features from images is challenging due to high variations across images in scale, rotation, illumination, and background. Existing methods often have a fixed model complexity and require domain expertise. Genetic programming (GP) with a flexible representation can find the best solution without the use of domain knowledge. This article proposes a new GP-based approach to automatically learning informative features for different image classification tasks. In the new approach, a number of image-related operators, including filters, pooling operators, and feature extraction methods, are employed as functions. A flexible program structure is developed to integrate different functions and terminals into a single tree/solution. The new approach can evolve solutions of variable depths to extract various numbers and types of features from the images. The new approach is examined on 12 different image classification tasks of varying difficulty and compared with a large number of effective algorithms. The results show that the new approach achieves better classification performance than most benchmark methods. The analysis of the evolved programs/solutions and the visualization of the learned features provide deep insights on the proposed approach.
机译:特征提取对于通过将低级像素值转换为高电平特征来解决图像分类至关重要。然而,由于尺度,旋转,照明和背景中图像的高变化,从图像中提取有效特征是具有挑战性的。现有方法通常具有固定的模型复杂性并要求域名专业知识。具有灵活表示的遗传编程(GP)可以在不使用域知识的情况下找到最佳解决方案。本文提出了一种新的基于GP的方法来自动学习不同图像分类任务的信息功能。在新方法中,许多图像相关运算符包括过滤器,池操作员和特征提取方法,作为函数。开发灵活的程序结构以将不同的功能和终端集成到单树/解决方案中。新方法可以扩大可变深度的解,以从图像中提取各种数量和类型的特征。在不同难度的12种不同的图像分类任务中检查了新方法,并与大量有效算法进行比较。结果表明,新方法实现了比大多数基准方法更好的分类性能。对演进计划/解决方案的分析以及学习功能的可视化提供了对所提出的方法的深刻见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号