首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Context-Aware, Adaptive, and Scalable Android Malware Detection Through Online Learning
【24h】

Context-Aware, Adaptive, and Scalable Android Malware Detection Through Online Learning

机译:通过在线学习检测上下文,自适应和可扩展的Android恶意软件

获取原文
获取原文并翻译 | 示例

摘要

It is well known that Android malware constantly evolves so as to evade detection. This causes the entire malware population to be nonstationary. Contrary to this fact, most of the prior works on machine learning based android malware detection have assumed that the distribution of the observed malware characteristics (i.e., features) does not change over time. In this paper, we address the problem of malware population drift and propose a novel online learning based framework to detect malware, named CASANDRA (Context-aware, Adaptive and Scalable ANDRoid mAlware detector). In order to perform accurate detection, a novel graph kernel that facilitates capturing apps security-sensitive behaviors along with their context information from dependence graphs is proposed. Besides being accurate and scalable, CASANDRA has specific advantages: first, being adaptive to the evolution in malware features over time; second, explaining the significant features that led to an apps classification as being malicious or benign. In a large-scale comparative analysis, CASANDRA outperforms two state-of-the-art techniques on a benchmark dataset achieving 99.23% F-measure. When evaluated with more than 87 000 apps collected in-the-wild, CASANDRA achieves 89.92% accuracy, outperforming existing techniques by more than 25% in their typical batch learning setting and more than 7% when they are continuously retained, while maintaining comparable efficiency.
机译:众所周知,Android恶意软件不断发展以逃避检测。这导致整个恶意软件种群都是不稳定的。与此事实相反,基于机器学习的android恶意软件检测的大多数先前工作都假设观察到的恶意软件特征(即特征)的分布不会随时间变化。在本文中,我们解决了恶意软件数量漂移的问题,并提出了一种新颖的基于在线学习的恶意软件检测框架,名为CASANDRA(上下文感知,自适应和可扩展ANDRoid mAlware检测器)。为了执行准确的检测,提出了一种新颖的图形内核,该图形内核有助于从依赖关系图中捕获应用程序的安全敏感行为及其上下文信息。除了准确和可扩展之外,CASANDRA还具有特定的优势:首先,随着时间的推移适应恶意软件功能的发展;其次,解释导致应用分类为恶意或良性的重要功能。在大规模的比较分析中,CASANDRA在基准数据集上实现了99.23%的F值,其性能优于两种最新技术。当通过野外收集的超过8.7万种应用进行评估时,CASANDRA的准确性达到89.92%,在典型的批量学习设置中优于现有技术25%以上,而在连续保留时则超过7%,同时保持了相当的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号