首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Dynamic Selection of Classifiers in Bug Prediction: An Adaptive Method
【24h】

Dynamic Selection of Classifiers in Bug Prediction: An Adaptive Method

机译:错误预测中分类器的动态选择:一种自适应方法

获取原文
获取原文并翻译 | 示例

摘要

In the last decades, the research community has devoted a lot of effort in the definition of approaches able to predict the defect proneness of source code files. Such approaches exploit several predictors (e.g., product or process metrics) and use machine learning classifiers to predict classes into buggy or not buggy, or provide the likelihood that a class will exhibit a fault in the near future. The empirical evaluation of all these approaches indicated that there is no machine learning classifier providing the best accuracy in any context, highlighting interesting complementarity among them. For these reasons ensemble methods have been proposed to estimate the bug-proneness of a class by combining the predictions of different classifiers. Following this line of research, in this paper we propose an adaptive method, named ASCI (Adaptive Selection of Classifiers in bug prediction), able to dynamically select among a set of machine learning classifiers the one which better predicts the bug-proneness of a class based on its characteristics. An empirical study conducted on 30 software systems indicates that ASCI exhibits higher performances than five different classifiers used independently and combined with the majority voting ensemble method.
机译:在过去的几十年中,研究界投入了大量精力来定义能够预测源代码文件缺陷倾向性的方法。这样的方法利用了几种预测器(例如,产品或过程度量),并且使用机器学习分类器来将类预测为有缺陷的或没有缺陷的,或者提供类在不久的将来会出现故障的可能性。对所有这些方法的经验评估表明,没有机器学习分类器在任何情况下都能提供最佳的准确性,从而突出了它们之间有趣的互补性。由于这些原因,已经提出了集成方法来通过组合不同分类器的预测来估计类的错误倾向性。遵循这一研究思路,在本文中,我们提出了一种自适应方法,称为ASCI(错误预测中的分类器自适应选择),该方法能够在一组机器学习分类器中动态选择能够更好地预测类错误倾向的分类器。根据其特征。在30个软件系统上进行的经验研究表明,与五个独立使用并与多数投票合奏方法相结合的不同分类器相比,ASCI表现出更高的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号