首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >An Energy-Efficient Partition-Based Framework With Continuous Ant Colony Optimization for Target Tracking in Mobile Sensor Networks
【24h】

An Energy-Efficient Partition-Based Framework With Continuous Ant Colony Optimization for Target Tracking in Mobile Sensor Networks

机译:基于节能分区的基于节能分区,具有用于移动传感器网络中的目标跟踪的连续蚁群优化

获取原文
获取原文并翻译 | 示例

摘要

Target tracking is one of the most common applications in mobile sensor networks. However, since mobile sensors are often battery powered, determining how to schedule the movements of mobile sensors to reduce energy consumption remains an important and challenging task. In this paper, a partition-based target tracking framework with a modified continuous ant colony optimization approach is proposed to achieve flexible and energy-efficient tracking. In the proposed framework, the sensing area is divided into subregions, and the scopes of movement of the mobile sensors are limited to the corresponding subregions to balance the energy consumption among sensors. A modified continuous ant colony optimization method is proposed to adaptively adjust the parameters of the tracking system (e.g., the sensing radius of mobile sensors) in each time instant, minimize the energy cost of the tracking system and yield a satisfactory tracking accuracy. The simulation results indicate that the proposed framework offers promising performance.
机译:目标跟踪是移动传感器网络中最常见的应用之一。然而,由于移动传感器通常是电池供电,确定如何安排移动传感器的运动,以降低能量消耗仍然是一个重要和具有挑战性的任务。本文提出了一种具有改进的连续蚁群优化方法的基于分区的目标跟踪框架,以实现灵活和节能的跟踪。在所提出的框架中,传感区域被划分为子区域,并且移动传感器的运动范围仅限于相应的子区域,以平衡传感器之间的能量消耗。提出了一种修改的连续蚁群优化方法,以在每次瞬间自适应地调整跟踪系统的参数(例如,移动传感器的感测到移动传感器的传感半径),最小化跟踪系统的能量成本,并产生令人满意的跟踪精度。仿真结果表明,所提出的框架提供了有希望的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号