首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >Data Augmentation for Radio Frequency Fingerprinting via Pseudo-Random Integration
【24h】

Data Augmentation for Radio Frequency Fingerprinting via Pseudo-Random Integration

机译:通过伪随机集成的射频指纹数据增强

获取原文
获取原文并翻译 | 示例

摘要

Radio frequency fingerprinting (RFF) is a lightweight access authentication method for the mobile terminal nodes. The classification accuracy of RFF is effectively improved by machine learning, of which the performance is deeply enhanced with the increasing training data. Data augmentation is the most frequently used method to get additional data and superior results with limited data in the classification of images and sounds. This paper proposes a random integration based data augmentation for signal processing via exploring the similarity between signal and deoxyribonucleic acid sequence. An optimized data augmentation based on pseudo-random integration is designed in order to provide additional data, and reduce the instability of classification accuracy caused by randomness simultaneously. Experiments are made to demonstrate performance of each augmentation method using the same model that classifies ten kinds of RF fingerprints with Gaussian support vector machine classifier, and show that pseudo-random integration has an obviously accurate and stable result with the same initial dataset and system, which implies that the performance of RFF could be improved further by applying pseudo-random integration based data augmentation.
机译:射频指纹(RFF)是移动终端节点的轻量级访问认证方法。通过机器学习有效地改善了RFF的分类精度,其中随着培训数据的增加,性能深入增强。数据增强是最常用的方法,以获得额外的数据和卓越的结果,在图像和声音的分类中具有有限的数据。本文提出了一种基于随机积分的数据增强,用于通过探索信号和脱氧核糖核酸序列之间的相似性进行信号处理。设计了基于伪随机集成的优化数据增强,以提供额外的数据,并同时通过随机性引起的分类精度的不稳定性。使用与高斯支持向量机分类器分类的相同模型进行同一模型来展示每个增强方法的性能,并显示伪随机集成具有明显准确且稳定的结果与相同的初始数据集和系统,这意味着通过应用基于伪随机积分的数据增强,可以进一步提高RFF的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号