首页> 外文期刊>IEEE Transactions on Emerging Topics in Computational Intelligence >A Parallel Surrogate Model Assisted Evolutionary Algorithm for Electromagnetic Design Optimization
【24h】

A Parallel Surrogate Model Assisted Evolutionary Algorithm for Electromagnetic Design Optimization

机译:电磁设计优化的并行替代模型辅助进化算法

获取原文
获取原文并翻译 | 示例

摘要

Optimization efficiency is a major challenge for electromagnetic (EM) device, circuit, and machine design. Although both surrogate model-assisted evolutionary algorithms (SAEAs) and parallel computing are playing important roles in addressing this challenge, there is little research that investigates their integration to benefit from both techniques. In this paper, a new method, called parallel SAEA for electromagnetic design (PSAED), is proposed. A state-of-the-art SAEA framework, surrogate model-aware evolutionary search, is used as the foundation of PSAED. Considering the landscape characteristics of EM design problems, three differential evolution mutation operators are selected and organized in a particular way. A new SAEA framework is then proposed to make use of the selected mutation operators in a parallel computing environment. PSAED is tested by a micromirror and a dielectric resonator antenna as well as four mathematical benchmark problems of various complexity. Comparisons with state-of-the-art methods verify the advantages of PSAED in terms of efficiency and optimization capacity.
机译:优化效率是电磁(EM)设备,电路和机器设计的主要挑战。尽管替代模型辅助进化算法(SAEA)和并行计算在应对这一挑战方面都发挥着重要作用,但很少有研究调查它们的集成以从这两种技术中受益。本文提出了一种称为并行SAEA的电磁设计方法(PSAED)。最新的SAEA框架(替代模型感知的进化搜索)被用作PSAED的基础。考虑到EM设计问题的格局特征,以特定方式选择并组织了三个差分进化突变算子。然后提出了一个新的SAEA框架,以在并行计算环境中使用所选的变异算子。 PSAED已通过微镜和介质谐振器天线以及各种复杂性的四个数学基准问题进行了测试。与最新方法的比较证明了PSAED在效率和优化能力方面的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号