首页> 外文期刊>Device and Materials Reliability, IEEE Transactions on >Error-Resilient Design Techniques for Reliable and Dependable Computing
【24h】

Error-Resilient Design Techniques for Reliable and Dependable Computing

机译:可靠,可靠的计算的防错设计技术

获取原文
获取原文并翻译 | 示例
           

摘要

Integrated circuits in modern systems-on-chip and microprocessors are typically operated with sufficient timing margins to mitigate the impact of rising process, voltage, and temperature (PVT) variations at advanced process nodes. The widening margins required for ensuring robust computation inevitably lead to conservative designs with unacceptable energy-efficiency overheads. Reconciling the conflicting objectives imposed by variation mitigation and energy-efficient computing will require fundamental departures from conventional circuit and system design practices. This paper posits error-resilient general-purpose computing as an effective approach for achieving this. We review resilient techniques that exploit tolerance to timing errors to automatically compensate for variations and dynamically tune a system to its most efficient operating point. We present the Razor approach as a pioneering example of such a technique. We present silicon measurement results from multiple industrial and academic demonstration systems that employ Razor dynamic voltage and frequency management. In particular, we highlight the application of Razor to two specific platforms. The first is an ARM-based industrial prototype where Razor dynamic adaptation leads to 52% energy savings at 1 GHz operation. The second platform applies Razor for robust operation in the presence of radiation-induced Single Event Upsets. These efforts clearly demonstrate how energy-efficient compute engines can be designed by combining timing-error resiliency with optimizations across algorithms, circuits, and microarchitecture boundaries.
机译:现代片上系统和微处理器中的集成电路通常在足够的时序裕量下运行,以减轻高级工艺节点处工艺,电压和温度(PVT)变化的影响。确保鲁棒计算所需的不断扩大的裕度不可避免地导致保守设计的能源效率开销不可接受。调和缓解变化和节能计算所带来的矛盾目标,将需要与常规电路和系统设计实践发生根本性的偏离。本文将抗错误的通用计算作为实现此目的的有效方法。我们将回顾利用对时序误差的容忍能力的弹性技术,以自动补偿变化并动态地将系统调整到其最有效的工作点。我们将Razor方法介绍为这种技术的开创性例子。我们将介绍来自采用Razor动态电压和频率管理的多个工业和学术演示系统的硅测量结果。特别是,我们重点介绍了Razor在两个特定平台上的应用。第一个是基于ARM的工业原型,其中Razor的动态自适应功能可在1 GHz运行时节省52%的能量。第二个平台将Razor应用于在辐射引起的单事件心烦的情况下的强劲运行。这些努力清楚地证明了如何通过将时序误差弹性与跨算法,电路和微体系结构边界的优化相结合来设计节能计算机引擎。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号