首页> 外文期刊>IEEE transactions on dependable and secure computing >Anomaly Detection in Operating System Logs with Deep Learning-Based Sentiment Analysis
【24h】

Anomaly Detection in Operating System Logs with Deep Learning-Based Sentiment Analysis

机译:具有深度学习的情感分析的操作系统日志中的异常检测

获取原文
获取原文并翻译 | 示例

摘要

The purpose of sentiment analysis is to detect an opinion or polarity in text data. We can apply such an analysis to detect negative sentiment, which represents the anomalous activities in operating system (OS) logs. Existing methods involve manual searching, predefined rules, or traditional machine learning techniques to detect such suspicious events. In this article, we propose a novel deep learning-based sentiment analysis technique to check whether there are anomalous activities in OS logs. Log messages are modeled as sentences and we identify the sentiments using the gated recurrent unit (GRU) networks. OS log datasets inherently have a class imbalance in the sense that the number of negative sentiment is much lower than that of the number of positive ones. In order to address the class imbalance, we build a GRU layer on top of a class imbalance solver using the Tomek link method. Experimental results demonstrate that the proposed method can detect anomalous events in OS logs with an overall F1 and accuracy of 99.84 and 99.93 percent, respectively.
机译:情绪分析的目的是检测文本数据中的意见或极性。我们可以应用这样的分析来检测负面情绪,这代表了操作系统(OS)日志中的异常活动。现有方法涉及手动搜索,预定义规则或传统的机器学习技术来检测此类可疑事件。在本文中,我们提出了一种新颖的基于深度学习的情绪分析技术,以检查操作系统日志是否存在异常活动。日志消息被建模为句子,我们使用门控复发单元(GRU)网络来确定情绪。 OS日志数据集本身有一个类不平衡,因为负面情绪的数量远低于正数的次数。为了解决类别的不平衡,我们使用Tomek Link方法在类不平衡求解器的顶部构建GRU层。实验结果表明,该方法可以分别检测OS日志中的异常事件,其总体F1和99.84和99.93%的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号