首页> 外文期刊>IEEE transactions on dependable and secure computing >Automatic Privacy and Utility Preservation for Mobility Data: A Nonlinear Model-Based Approach
【24h】

Automatic Privacy and Utility Preservation for Mobility Data: A Nonlinear Model-Based Approach

机译:移动数据的自动隐私和公用事业保护:基于非线性模型的方法

获取原文
获取原文并翻译 | 示例

摘要

The widespread use of mobile devices and location-based services has generated a large number of mobility databases. While processing these data is highly valuable, privacy issues can occur if personal information is revealed. The prior art has investigated ways to protect mobility data by providing a wide range of Location Privacy Protection Mechanisms (LPPMs). However, the privacy level of the protected data significantly varies depending on the protection mechanism used, its configuration and on the characteristics of the mobility data. Meanwhile, the protected data still needs to enable some useful processing. To tackle these issues, we present PULP, a framework that finds the suitable protection mechanism and automatically configures it for each user in order to achieve user-defined objectives in terms of both privacy and utility. PULP uses nonlinear models to capture the impact of each LPPM on data privacy and utility levels. Evaluation of our framework is carried out with two protection mechanisms from the literature and four real-world mobility datasets. Results show the efficiency of PULP, its robustness and adaptability. Comparisons between LPPMs' configurators and the state of the art further illustrate that PULP better realizes users' objectives, and its computation time is in orders of magnitude faster.
机译:移动设备和基于位置的服务的广泛使用已经产生了大量的移动数据库。在处理这些数据的同时,如果显示个人信息,则可能会出现隐私问题。现有技术通过提供广泛的位置隐私保护机制(LPPMS)来研究方法来保护移动数据。然而,受保护数据的隐私水平根据所使用的保护机制,其配置和移动数据的特性而显着变化。同时,受保护的数据仍然需要启用一些有用的处理。为了解决这些问题,我们呈现纸浆,这是一个找到合适的保护机制的框架,并自动为每个用户配置它,以便在隐私和实用程序方面实现用户定义的目标。纸浆使用非线性模型来捕获每个LPPM对数据隐私和公用事业级别的影响。我们框架的评估是用文献和四个现实世界移动数据集的两个保护机制进行。结果表明纸浆的效率,其鲁棒性和适应性。 LPPMS配置器之间的比较和本领域的状态进一步说明了纸浆更好地实现了用户的目标,并且其计算时间符数量速度更快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号