首页> 外文期刊>IEEE transactions on dependable and secure computing >Detection and Defense of Cache Pollution Attacks Using Clustering in Named Data Networks
【24h】

Detection and Defense of Cache Pollution Attacks Using Clustering in Named Data Networks

机译:使用命名数据网络的聚类检测和防护缓存污染攻击

获取原文
获取原文并翻译 | 示例

摘要

Named Data Network (NDN), as a promising information-centric networking architecture, is expected to support next-generation of large-scale content distribution with open in-network cachings. However, such open in-network caches are vulnerable against Cache Pollution Attacks (CPAs) with the goal of filling cache storage with non-popular contents. The detection and defense against such attacks are especially difficult because of CPA's similarities with normal fluctuations of content requests. In this work, we use a clustering technique to detect and defend against CPAs. By clustering the content interests, our scheme is able to distinguish whether they have followed the Zipf-like distribution or not for accurate detections. Once any attack is detected, an attack table will be updated to record the abnormal requests. While such requests are still forwarded, the corresponding content chunks are not cached. Extensive simulations in ndnSIM demonstrate that our scheme can resist CPA effectively with higher cache hit, higher detecting ratio, lower hop count, and lower algorithm complexity compared to other state-of-the-art schemes.
机译:作为一个有前途的信息中心网络架构,命名数据网络(NDN)预计将支持下一代大规模内容分发,其中包含开放的网络中的缓存。然而,这种开放的网络中缓存易受缓存污染攻击(CPA)的目标,其目标是使用非流行内容填充缓存存储。由于CPA的相似性与内容请求的正常波动的相似性,对这种攻击的检测和防御特别困难。在这项工作中,我们使用聚类技术来检测和防御CPA。通过聚类内容兴趣,我们的方案能够区分他们是否遵循Zipf样分布或不准确的检测。检测到任何攻击后,将更新攻击表以记录异常请求。虽然此类请求仍然转发,但不缓存相应的内容块。与其他最先进的方案相比,NDNSIM中的广泛模拟表明我们的方案可以有效地抵抗CPA,更高的高速缓存,更高的检测比,下跳计数和更低的算法复杂性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号