首页> 外文期刊>IEEE transactions on dependable and secure computing >TaintMan: An ART-Compatible Dynamic Taint Analysis Framework on Unmodified and Non-Rooted Android Devices
【24h】

TaintMan: An ART-Compatible Dynamic Taint Analysis Framework on Unmodified and Non-Rooted Android Devices

机译:Taintman:未修改和非生根Android设备上的艺术兼容动态Taint分析框架

获取原文
获取原文并翻译 | 示例

摘要

Dynamic taint analysis (DTA), as a mainstream information flow tracking technique, has been widely used in mobile security. On the Android platform, the existing DTA approaches are typically implemented by instrumenting the Dalvik virtual machine (DVM) interpreter or the Android emulator with taint enforcement code. The most prominent problem of the interpreter-based approaches is that they cannot work in the new Android RunTime (ART) environment introduced since the 5.0 release. For the emulator-based approaches, the most prominent problem is that they cannot be deployed on real devices. In addition, almost all the existing Android DTA approaches only concern the explicit information flow caused by data dependence, while completely ignore the impact of implicit information flow caused by control dependence. These problems limit their adoption in the latest Android system and make them ineffective in detecting the state-of-the-art malware whose privacy-breaching behaviors are inactivated in the analyzed environment (e.g., the emulator) or conducted via implicit information flow. In this paper, we present TaintMan, an ART-compatible DTA framework that can be deployed on unmodified and non-rooted Android devices. In TaintMan, the taint enforcement code is statically instrumented into both the target application and the system class libraries to track data flow and common control flow. A specially designed execution environment reconstruction technique, named reference hijacking, is proposed to force the target application to reference the instrumented system class libraries. By enforcing on-demand instrumentation and on-demand tracking, the performance overhead is significantly reduced. We have developed TaintMan and deployed it on two popular stock smartphones (HTC One S equipped with Android-4.0 and Motorola MOTO G equipped with Android-5.0). The evaluation with malware samples and real-world applications shows that TaintMan can effectively detect privacy leakage behaviors with an acceptable performance overhead.
机译:动态Taint分析(DTA)作为主流信息流跟踪技术,已广泛用于移动安全性。在Android平台上,现有的DTA方法通常通过用Taint强制执行代码仪表Dalvik虚拟机(DVM)解释器或Android仿真器来实现。基于解释器的方法最突出的问题是他们无法在自5.0版本以来推出的新的Android运行时(ART)环境中。对于基于仿真器的方法,最突出的问题是它们无法在真实设备上部署。此外,几乎所有现有的Android DTA方法都仅关注数据依赖性引起的显式信息流,而完全忽略了由控制依赖性引起的隐式信息流的影响。这些问题限制了他们在最新的Android系统中的采用,并使它们在检测到艺术状态恶意软件中的隐私破坏行为在分析的环境(例如,模拟器)中或通过隐式信息流进行或进行的最终的恶意软件。在本文中,我们呈现Taintman,这是一个艺术兼容的DTA框架,可以部署在未修改的和非生根的Android设备上。在Taintman中,Taint强制执行代码在目标应用程序和系统类库中静态被检测到跟踪数据流和公共控制流程。建议采用特殊设计的执行环境重建技术,命名引用劫持,以强制目标应用程序引用仪器化系统类库。通过执行按需仪器和按需跟踪,性能开销显着降低。我们开发了Taintman并在两个流行的智能手机上部署它(HTC One Sit配备了Android-4.0和配备Android-5.0的摩托罗拉Moto G)。与恶意软件样本和现实世界应用的评估表明,Taintman可以有效地检测隐私泄漏行为,具有可接受的性能开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号