首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >Designing Dependable Storage Solutions for Shared Application Environments
【24h】

Designing Dependable Storage Solutions for Shared Application Environments

机译:为共享应用程序环境设计可靠的存储解决方案

获取原文
获取原文并翻译 | 示例

摘要

The costs of data loss and unavailability can be large, so businesses use many data protection techniques such as remote mirroring, snapshots, and backups to guard against failures. Choosing an appropriate combination of techniques is difficult because there are numerous approaches for protecting data and allocating resources. Storage system architects typically use ad hoc techniques, often resulting in overengineered expensive solutions or underprovisioned inadequate ones. In contrast, this paper presents a principled automated approach for designing dependable storage solutions for multiple applications in shared environments. Our contributions include search heuristics for intelligent exploration of the large design space and modeling techniques for capturing interactions between applications during recovery. Using realistic storage system requirements, we show that our design tool produces designs that cost up to two times less in initial outlays and expected data penalties than the designs produced by an emulated human design process. Additionally, we compare our design tool to a random search heuristic and a genetic algorithm metaheuristic, and show that our approach consistently produces better designs for the cases we have studied. Finally, we study the sensitivity of our design tool to several input parameters.
机译:数据丢失和不可用的成本可能很高,因此企业使用许多数据保护技术(例如远程镜像,快照和备份)来防止故障。选择适当的技术组合非常困难,因为存在许多保护数据和分配资源的方法。存储系统架构师通常使用临时技术,通常导致过度设计的昂贵解决方案或配置不足的解决方案。相比之下,本文提出了一种原理化的自动化方法,该方法可为共享环境中的多个应用程序设计可靠的存储解决方案。我们的贡献包括用于智能探索大型设计空间的搜索启发法和用于捕获恢复期间应用程序之间的交互的建模技术。使用实际的存储系统要求,我们表明,与模拟的人工设计过程所产生的设计相比,我们的设计工具所产生的设计在初始支出和预期数据损失方面的成本最多降低了两倍。此外,我们将设计工具与随机搜索启发式算法和遗传算法元启发式算法进行了比较,并表明我们的方法始终如一地为我们研究的案例提供了更好的设计。最后,我们研究设计工具对几个输入参数的敏感性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号