首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >Anomaly Detection in Network Traffic Based on Statistical Inference and alpha-Stable Modeling
【24h】

Anomaly Detection in Network Traffic Based on Statistical Inference and alpha-Stable Modeling

机译:基于统计推断和α稳定模型的网络流量异常检测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel method to detect anomalies in network traffic, based on a nonrestricted alpha-stable first-order model and statistical hypothesis testing. To this end, we give statistical evidence that the marginal distribution of real traffic is adequately modeled with alpha-stable functions and classify traffic patterns by means of a Generalized Likelihood Ratio Test (GLRT). The method automatically chooses traffic windows used as a reference, which the traffic window under test is compared with, with no expert intervention needed to that end. We focus on detecting two anomaly types, namely floods and flash-crowds, which have been frequently studied in the literature. Performance of our detection method has been measured through Receiver Operating Characteristic (ROC) curves and results indicate that our method outperforms the closely-related state-of-the-art contribution described in [CHECK END OF SENTENCE]. All experiments use traffic data collected from two routers at our universityȁ4;a 25,000 students institutionȁ4;which provide two different levels of traffic aggregation for our tests (traffic at a particular school and the whole university). In addition, the traffic model is tested with publicly available traffic traces. Due to the complexity of alpha-stable distributions, care has been taken in designing appropriate numerical algorithms to deal with the model.
机译:本文提出了一种新的方法来检测网络流量中的异常情况,该方法基于无限制的α稳定一阶模型和统计假设检验。为此,我们提供了统计证据,可以使用alpha稳定函数对真实流量的边际分布进行充分建模,并通过广义似然比检验(GLRT)对流量模式进行分类。该方法自动选择用作参考的交通窗口,将其与被测试的交通窗口进行比较,而无需为此进行专家干预。我们专注于检测两种异常类型,即洪水和山洪人群,这在文献中经常被研究。我们已经通过接收器工作特征(ROC)曲线测量了我们检测方法的性能,结果表明我们的方法优于[CHECK END OF SENTENCE]中描述的密切相关的最新技术。所有实验都使用从我们大学的两个路由器收集的流量数据data4;一个25,000个学生机构ȁ4;这些流量数据为我们的测试提供了两种不同级别的流量汇总(在特定学校和整个大学的流量)。此外,将使用公开的流量跟踪测试流量模型。由于alpha稳定分布的复杂性,在设计适当的数值算法以处理模型时已格外小心。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号