首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >Preserving Structural Properties in Edge-Perturbing Anonymization Techniques for Social Networks
【24h】

Preserving Structural Properties in Edge-Perturbing Anonymization Techniques for Social Networks

机译:在社交网络的边缘扰动匿名化技术中保留结构属性

获取原文
获取原文并翻译 | 示例

摘要

Social networks are attracting significant interest from researchers in different domains, especially with the advent of social networking systems which enable large-scale collection of network information. However, as much as analysis of such social networks can benefit researchers, it raises serious privacy concerns for the people involved in them. To address such privacy concerns, several techniques, such as k-anonymity-based approaches, have been proposed in the literature to provide user anonymity in published social networks. However, these methods usually introduce a large amount of distortion to the original social network graphs, thus, raising serious questions about their utility for useful social network analysis. Consequently, these techniques may never be applied in practice. We propose two methods to enhance edge-perturbing anonymization methods based on the concepts of structural roles and edge betweenness in social network theory. We experimentally show significant improvements in preserving structural properties in an anonymized social network achieved by our approach compared to the original algorithms over several data sets.
机译:社交网络吸引了来自不同领域的研究人员的极大兴趣,特别是随着能够大规模收集网络信息的社交网络系统的出现。但是,只要对此类社交网络进行分析可以使研究人员受益,它就会给参与其中的人们带来严重的隐私问题。为了解决这种隐私问题,文献中已经提出了几种技术,例如基于k匿名的方法,以在公开的社交网络中提供用户匿名。但是,这些方法通常会给原始的社交网络图带来大量的失真,从而引发了有关其在有用的社交网络分析中的效用的严重问题。因此,这些技术可能永远不会在实践中应用。我们基于社交网络理论中结构角色和边缘中间性的概念,提出了两种增强边缘扰动匿名化方法的方法。我们实验证明,与原始算法相比,通过我们的方法实现的在匿名社交网络中保留结构属性方面的显着改进,与在多个数据集上的原始算法相比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号