首页> 外文期刊>Dependable and Secure Computing, IEEE Transactions on >Mining Attribute-Based Access Control Policies
【24h】

Mining Attribute-Based Access Control Policies

机译:挖掘基于属性的访问控制策略

获取原文
获取原文并翻译 | 示例

摘要

Attribute-based access control (ABAC) provides a high level of flexibility that promotes security and information sharing. ABAC policy mining algorithms have potential to significantly reduce the cost of migration to ABAC, by partially automating the development of an ABAC policy from an access control list (ACL) policy or role-based access control (RBAC) policy with accompanying attribute data. This paper presents an ABAC policy mining algorithm. To the best of our knowledge, it is the first ABAC policy mining algorithm. Our algorithm iterates over tuples in the given user-permission relation, uses selected tuples as seeds for constructing candidate rules, and attempts to generalize each candidate rule to cover additional tuples in the user-permission relation by replacing conjuncts in attribute expressions with constraints. Our algorithm attempts to improve the policy by merging and simplifying candidate rules, and then it selects the highest-quality candidate rules for inclusion in the generated policy.
机译:基于属性的访问控制(ABAC)提供了高度的灵活性,可促进安全性和信息共享。通过从访问控制列表(ACL)策略或基于角色的访问控制(RBAC)策略以及随附的属性数据中部分自动化ABAC策略的开发,ABAC策略挖掘算法具有极大地降低迁移到ABAC的成本的潜力。本文提出了一种ABAC策略挖掘算法。据我们所知,这是第一个ABAC策略挖掘算法。我们的算法在给定的用户权限关系中遍历元组,使用选定的元组作为构造候选规则的种子,并尝试通过用约束替换属性表达式中的连接词来概括每个候选规则以覆盖用户权限关系中的其他元组。我们的算法尝试通过合并和简化候选规则来改进策略,然后选择质量最高的候选规则以包含在生成的策略中。

著录项

获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号