首页> 外文期刊>IEEE transactions on dependable and secure computing >Security Optimization of Dynamic Networks with Probabilistic Graph Modeling and Linear Programming
【24h】

Security Optimization of Dynamic Networks with Probabilistic Graph Modeling and Linear Programming

机译:概率图建模和线性规划的动态网络安全性优化

获取原文
获取原文并翻译 | 示例

摘要

Securing the networks of large organizations is technically challenging due to the complex configurations and constraints. Managing these networks requires rigorous and comprehensive analysis tools. A network administrator needs to identify vulnerable configurations, as well as tools for hardening the networks. Such networks usually have dynamic and fluidic structures, thus one may have incomplete information about the connectivity and availability of hosts. In this paper, we address the problem of statically performing a rigorous assessment of a set of network security defense strategies with the goal of reducing the probability of a successful large-scale attack in a dynamically changing and complex network architecture. We describe a probabilistic graph model and algorithms for analyzing the security of complex networks with the ultimate goal of reducing the probability of successful attacks. Our model naturally utilizes a scalable state-of-the-art optimization technique called sequential linear programming that is extensively applied and studied in various engineering problems. In comparison to related solutions on attack graphs, our probabilistic model provides mechanisms for expressing uncertainties in network configurations, which is not reported elsewhere. We have performed comprehensive experimental validation with real-world network configuration data of a sizable organization.
机译:由于复杂的配置和约束,保护大型组织的网络在技术上具有挑战性。管理这些网络需要严格而全面的分析工具。网络管理员需要确定易受攻击的配置以及用于加固网络的工具。这样的网络通常具有动态和流动的结构,因此可能没有有关主机的连接性和可用性的信息。在本文中,我们解决了静态地对一组网络安全防御策略进行严格评估的问题,目的是降低在动态变化且复杂的网络体系结构中成功进行大规模攻击的可能性。我们描述了一种概率图模型和算法,用于分析复杂网络的安全性,其最终目标是减少成功攻击的可能性。我们的模型自然利用可扩展的,最先进的优化技术(称为顺序线性规划)来广泛应用和研究各种工程问题。与攻击图的相关解决方案相比,我们的概率模型提供了表达网络配置中不确定性的机制,这一点在其他地方未见报道。我们已经对相当大的组织的真实网络配置数据进行了全面的实验验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号