首页> 外文期刊>Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on >Linear Programming-Based Optimization for Robust Data Modeling in a Distributed Sensing Platform
【24h】

Linear Programming-Based Optimization for Robust Data Modeling in a Distributed Sensing Platform

机译:基于线性规划的分布式传感平台中稳健数据建模的优化

获取原文
获取原文并翻译 | 示例

摘要

Creating accurate data models describing the dynamics of physical phenomena in time and space is important in optimized control and decision making. Models highlight various trends and patterns. However, producing accurate models is challenging as different errors are introduced by sampling platforms with limited resources, e.g., insufficient sampling rates, data loss due to buffer overwriting, reduced communication bandwidth, and long communication delays. Furthermore, the dynamics of the environment, like mobile energy sources and sinks, might further increase errors as resources must be shared between the sampling and communication activities. This paper presents a procedure to systematically construct robust data models using samples acquired through a grid network of embedded sensing devices with limited resources, like bandwidth and buffer memory. Models are in the form of ordinary differential equations. The procedure constructs local data models by lumping state variables. Local models are then collected centrally to produce global models. The proposed modeling scheme uses a linear programming formulation to compute the lumping level at each node, and the parameters of the networked sensing platform, i.e., best data communication paths and bandwidths. Two algorithms are described to predict the trajectories of mobile energy sources/sinks as predictions can further reduce data loss and delays during communication. The computed parameters and trajectory predictions are used to configure the local decision making routines of the networked sampling nodes. Even though the procedure can be used to model a broader set of phenomena, experiments discuss the effectiveness of the method for thermal modeling of ULTRASPARC Niagara T1 architecture. Experiments show that the presented method reduces the overall error between 58.29% and 76.91% with an average of 68.87%, and communication delay between −11.49% and 57.62% with - n average of 21.85%.
机译:创建精确的数据模型来描述时间和空间中物理现象的动力学,对于优化控制和决策至关重要。模型突出了各种趋势和模式。但是,由于资源有限的采样平台会引入不同的错误,例如,采样率不足,由于缓冲区改写导致的数据丢失,通信带宽减少以及通信延迟长,因此产生准确的模型具有挑战性。此外,由于必须在采样和通信活动之间共享资源,环境的动态(如移动能源和汇)可能会进一步增加误差。本文提出了一种程序,该程序使用通过有限资源(例如带宽和缓冲存储器)的嵌入式传感设备的网格网络获取的样本,系统地构建健壮的数据模型。模型采用常微分方程的形式。该过程通过集中状态变量来构造本地数据模型。然后集中收集局部模型以产生全局模型。所提出的建模方案使用线性编程公式来计算每个节点处的集总水平,以及网络感测平台的参数,即最佳数据通信路径和带宽。描述了两种算法来预测移动能源/汇的轨迹,因为预测可以进一步减少通信过程中的数据丢失和延迟。计算出的参数和轨迹预测用于配置网络采样节点的本地决策例程。即使可以使用该过程来建模更广泛的现象集,实验也讨论了用于ULTRASPARC Niagara T1体系结构的热建模方法的有效性。实验表明,该方法将总误差降低了58.29%至76.91%,平均降低了68.87%,通信延迟降低了-11.49%至57.62%,-n平均降低了21.85%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号