首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Sparse Linear Regression (SPLINER) Approach for Efficient Multidimensional Uncertainty Quantification of High-Speed Circuits
【24h】

Sparse Linear Regression (SPLINER) Approach for Efficient Multidimensional Uncertainty Quantification of High-Speed Circuits

机译:高速电路的多维多维不确定度量化的稀疏线性回归(SPLINER)方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a novel linear regression-based polynomial chaos (PC) approach for the efficient multidimensional uncertainty quantification of general distributed and lumped high-speed circuit networks. The key feature of this paper is the development of a modified Fedorov search algorithm based on the D -optimal criterion that expeditiously locates a highly sparse set of nodes within the multidimensional random space where the original network needs to be probed. Specifically, the number of selected nodes is kept equal to the number of unknown PC coefficients of the network response, thereby making this approach substantially more efficient than the conventional linear regression approach which is based on an oversampling methodology. Additionally, due to the D -optimal criterion, this approach ensures highly accurate recovery of the PC coefficients. The validity of this paper is established through multiple numerical examples.
机译:本文提出了一种新颖的基于线性回归的多项式混沌(PC)方法,用于对通用分布式和集总高速电路网络进行有效的多维不确定性量化。本文的关键特征是基于D最优准则的改进的Fedorov搜索算法的开发,该算法可在多维随机空间内需要探测原始网络的节点上快速定位高度稀疏的节点集。具体地,所选节点的数量保持等于网络响应的未知PC系数的数量,从而使该方法比基于过采样方法的传统线性回归方法更加有效。另外,由于D最优准则,该方法确保了PC系数的高精度恢复。本文通过多个数值例子验证了本文的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号