首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Solar Power Prediction Assisted Intra-task Scheduling for Nonvolatile Sensor Nodes
【24h】

Solar Power Prediction Assisted Intra-task Scheduling for Nonvolatile Sensor Nodes

机译:非易失性传感器节点的太阳能预测辅助任务内调度

获取原文
获取原文并翻译 | 示例

摘要

With the advent of the era of trillion sensors, solar-powered sensor nodes are widely used as they do not require battery charging or replacement. However, the limited and intermittent solar energy supply seriously affects deadline miss rate (DMR) of tasks. Furthermore, traditional solar-powered sensor nodes also suffer from energy loss of battery charging and voltage conversion. Recently, a storage-less and converter-less power supply architecture has been proposed to achieve higher energy efficiency by removing the leaky energy storage and dc voltage conversion. Without energy storages, a node using inter-task scheduling is more sensitive to solar variations, which results in high DMRs. This paper proposes an intra-task scheduling scheme for the storage-less and converter-less solar-powered sensor nodes, whose features include power prediction based on classified solar profiles, a trigger mechanism to select scheduling points, an artificial neural network to calculate task priorities and a fine-grained task selection algorithm. Experimental results show that the proposed algorithm reduces DMR by up to 30% and improves energy utilization efficiency by 20% with trivial energy overheads.
机译:随着万亿传感器时代的到来,太阳能传感器节点被广泛使用,因为它们不需要电池充电或更换。但是,有限且间歇的太阳能供应严重影响任务的截止期限未命中率(DMR)。此外,传统的太阳能传感器节点还遭受电池充电和电压转换的能量损失。最近,提出了一种无存储和无转换器的电源架构,以通过消除泄漏的储能和直流电压转换来实现更高的能源效率。没有能量存储,使用任务间调度的节点对太阳变化更为敏感,这会导致较高的DMR。本文提出了一种针对无存储和无转换器的太阳能传感器节点的任务内调度方案,其特征包括基于分类的太阳能剖面的功率预测,选择调度点的触发机制,计算任务的人工神经网络。优先级和细粒度的任务选择算法。实验结果表明,所提出的算法可将DMR降低30%,将能源利用效率提高20%,而能源消耗却很小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号