首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Black-Box Test-Cost Reduction Based on Bayesian Network Models
【24h】

Black-Box Test-Cost Reduction Based on Bayesian Network Models

机译:基于贝叶斯网络模型的黑匣子测试成本降低

获取原文
获取原文并翻译 | 示例

摘要

The growing complexity of circuit boards makes manufacturing test increasingly expensive. In order to reduce test cost, a number of test selection methods have been proposed in the literature. However, only few of these methods can be applied to black-box test-cost reduction. In this article, we propose a novel black-box test selection method based on Bayesian networks (BNs), which extract the strong relationship among tests. First, the problem of reducing the black-box test cost is formulated as a constrained optimization problem. Next, multiple structure learning and transfer learning algorithms are implemented to construct BN models. Based on these BN models, we propose an iterative test selection method with a new metric, Bayesian index, for test-cost reduction. In addition, averaging strategies are applied to enhance the reduction performance. Finally, a robust model selection framework is proposed to select the optimal BN model for test-cost reduction. Two case studies with production test data demonstrate that when no prior information is provided, our proposed approach effectively reduces the test cost by up to 14.7%, compared to the state-of-the-art greedy algorithm. Moreover, our proposed approach further reduces the test cost by up to 7.1% when prior information is provided from similar products.
机译:电路板的增长复杂性使得制造测试越来越昂贵。为了降低测试成本,文献中已经提出了许多测试选择方法。但是,这些方法中的少数可以应用于黑匣子测试成本降低。在本文中,我们提出了一种基于贝叶斯网络(BNS)的新型黑匣子测试选择方法,提取了测试之间的强有力的关系。首先,将缩小黑盒试验成本的问题作为约束优化问题。接下来,实现多种结构学习和传输学习算法以构建BN模型。基于这些BN模型,我们提出了一种迭代测试选择方法,具有新的公制贝叶斯指数,用于减少测试成本。此外,应用平均策略来提高减少性能。最后,提出了一种强大的模型选择框架来选择用于测试成本的最佳BN模型。两种案例研究与生产测试数据表明,与提供先前信息时,与最先进的贪婪算法相比,我们的提出方法有效地将测试成本降低了高达14.7%。此外,当从类似产品提供之前的信息时,我们所提出的方法进一步将测试成本降低至7.1%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号