首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >DiReCtX: Dynamic Resource-Aware CNN Reconfiguration Framework for Real-Time Mobile Applications
【24h】

DiReCtX: Dynamic Resource-Aware CNN Reconfiguration Framework for Real-Time Mobile Applications

机译:DirectX:用于实时移动应用程序的动态资源感知CNN重新配置框架

获取原文
获取原文并翻译 | 示例

摘要

Although convolutional neural networks (CNNs) have been widely applied in various cognitive applications, they are still very computationally intensive for resource-constrained mobile systems. To reduce the resource consumption of CNN computation, many optimization works have been proposed for mobile CNN deployment. However, most works are merely targeting CNN model compression from the perspective of parameter size or model structure, ignoring different resource constraints in mobile systems with respect to memory, energy, and real-time requirement. Moreover, previous works take accuracy as their primary consideration, requiring a time-costing retraining process to compensate the inference accuracy loss after compression. To address these issues, we propose DiReCtX —a dynamic resource-aware CNN model reconfiguration framework. DiReCtX is based on a set of accurate CNN profiling models for different resource consumption and inference accuracy estimation. With manageable consumption/accuracy tradeoffs, DiReCtX can reconfigure a CNN model to meet distinct resource constraint types and levels with expected inference performance maintained. To further achieve fast model reconfiguration in real-time, improved CNN model pruning and its corresponding accuracy tuning strategies are also proposed in DiReCtX . The experiments show that the proposed CNN profiling models can achieve 94.6% and 97.1% accuracy for CNN model resource consumption and inference accuracy estimation. Meanwhile, the proposed reconfiguration scheme of DiReCtX can achieve at most 44.44% computation acceleration, 31.69% memory reduction, and 32.39% energy saving, respectively. On field-tests with state-of-the-art smartphones, DiReCtX can adapt CNN models to various resource constraints in mobile application scenarios with optimal real-time performance.
机译:虽然卷积神经网络(CNNS)已广泛应用于各种认知应用,但它们仍然非常适用于资源受限的移动系统。为了降低CNN计算的资源消耗,已经提出了许多优化工作,用于移动CNN部署。然而,大多数作品只是从参数大小或模型结构的角度定位CNN模型压缩,忽略了移动系统中的不同资源约束<斜体XMLNS:mml =“http://www.w3.org/1998/math/mathml” XMLNS:XLink =“http://www.w3.org/1999/xlink”>关于内存,能量和实时要求。此外,以前的作品是准确的,作为他们的主要考虑因素,需要耗时的再培训过程来补偿压缩后的推理精度损耗。要解决这些问题,我们提出<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> DirectX -a动态资源感知CNN模型重新配置框架。 directx 是基于关于不同资源消耗和推理精度估计的一套精确的CNN分析模型。具有可管理的消费/准确性权衡,<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> DirectX 可以重新配置CNN模型,以满足不同的资源约束类型和级别,具有预期的推理性能。为了进一步实时实现快速模型重新配置,在<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”XMLNS中也提出了改进的CNN模型修剪及其相应的精度调整策略: xlink =“http://www.w3.org/1999/xlink”> directx 。实验表明,拟议的CNN分析模型可实现CNN模型资源消耗和推理准确估计的94.6%和97.1%的准确性。同时,提出的<斜体XMLNS:mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> DirectX 最多可实现44.44%的计算加速度,31.69%的内存减少和节能32.39%。在现场测试与最先进的智能手机,<斜体XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3。 ORG / 1999 / XLink“> DirectX 可以使CNN模型适应移动应用程序方案中的各种资源约束,具有最佳的实时性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号