首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Robust Deep Reservoir Computing Through Reliable Memristor With Improved Heat Dissipation Capability
【24h】

Robust Deep Reservoir Computing Through Reliable Memristor With Improved Heat Dissipation Capability

机译:通过可靠的忆阻器计算强大的深层储层,具有改善的散热能力

获取原文
获取原文并翻译 | 示例

摘要

Deep neural networks (DNNs), a brain-inspired learning methodology, requires tremendous data for training before performing inference tasks. The recent studies demonstrate a strong positive correlation between the inference accuracy and the size of the DNNs and datasets, which leads to an inevitable demand for large DNNs. However, conventional memory techniques are not adequate to deal with the drastic growth of dataset and neural network size. Recently, a resistive memristor has been widely considered as the next generation memory device owing to its high density and low power consumption. Nevertheless, its high switching resistance variations (cycle-to-cycle) restrict its feasibility in deep learning. In this work, a novel memristor configuration with the enhanced heat dissipation feature is fabricated and evaluated to address this challenge. Our experimental results demonstrate our memristor reduces the resistance variation by similar to 30% and the inference accuracy increases correspondingly in a similar range. The accuracy increment is evaluated by our deep delay-feed-back reservoir computing (Deep-DFR) model. The design area, power consumption, and latency are reduced by similar to 48%, similar to 42%, and similar to 67%, respectively, compared to the conventional static random-access memory technique (6T). The performance of our memristor is improved at various degrees (similar to 13%-73%) compared to the state-of-the-art memristors.
机译:深度神经网络(DNN)是一种脑激发学习方法,需要在执行推理任务之前进行训练的巨大数据。最近的研究表明推理准确性和DNN和数据集的大小之间的强大正相关,这导致对大型DNN的不可避免的需求。然而,传统的存储器技术不足以处理数据集和神经网络尺寸的急剧增长。最近,由于其高密度和低功耗而被广泛地被广泛地被视为下一代存储器件。然而,其高开关抵抗变化(周期到循环)限制了深度学习的可行性。在这项工作中,制造和评估了具有增强型散热特征的新型Memristor配置,以解决这一挑战。我们的实验结果表明,我们的忆阻器减少了相似的电阻变化,并且推理精度在相似范围内相应地增加。通过我们的深度延迟馈回储层计算(Deep-DFR)模型来评估精度增量。与传统的静态随机存取存储器技术(6T)相比,设计区域,功耗和延迟分别与48%相似,类似于4.8%,类似于42%,类似于67%,类似于67%。与最先进的忆失盘相比,我们的忆反应器的性能得到改善(类似于13%-73%)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号