首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >WinDConv: A Fused Datapath CNN Accelerator for Power-Efficient Edge Devices
【24h】

WinDConv: A Fused Datapath CNN Accelerator for Power-Efficient Edge Devices

机译:WINDCONV:用于节能边缘设备的融合DataPath CNN加速器

获取原文
获取原文并翻译 | 示例

摘要

Diverse applications of Deep convolution neural networks (CNNs), such as image classification, semantic segmentation, video recognition, etc., in smart systems require high-throughput acceleration for real-time performance. Such CNNs when realized on edge devices of the Internet of Things, a power/energy-efficient compute platform is required, which can meet the limited power/energy budget of the devices. In this regard, an end-to-end power-optimized acceleration for the compute-intensive CNNs is proposed in this work. The proposed architecture, termed WinDConv, introduces a scheme to support both regular and energy-efficient Winograd convolutions on the same architecture through a fused datapath. Furthermore, using a thoroughly investigated data sparsity enhancement, the data reuse scheme, and a suitable memory hierarchy for power efficiency, the proposed architecture is able to exhibit a practical average power efficiency of at least 12.35 tera operations per second per Watt, which is at least 2x higher than the generic z-first storage baseline architecture with over 3x higher energy efficiency. The proposed architecture also demonstrates the applicability of the proposed schemes in commonly occurring variants of the convolution operation.
机译:智能系统中的深度卷积神经网络(CNNS)的不同应用,如图像分类,语义分割,视频识别等,需要高通量加速以进行实时性能。这种CNN在内容网的边缘设备上实现时,需要一种功率/节能计算平台,这可以满足设备的有限功率/能量预算。在这方面,在这项工作中提出了对计算密集型CNN的端到端功率优化的加速度。所提出的架构被称为WindConv,介绍了一种通过融合数据路径来支持同一架构上的常规和节能Winograd卷积的方案。此外,使用彻底调查的数据稀疏增强,数据重用方案和适用的电力效率的存储层级,所提出的架构能够表现出每瓦的每秒至少12.35立方英尺的实用平均功率效率,这是至少2倍高于通用Z-First存储基线架构,具有超过3倍的能量效率。该建议的体系结构还展示了所提出的方案在卷积操作的常用变体中的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号