首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Static Scheduling of Moldable Streaming Tasks With Task Fusion for Parallel Systems With DVFS
【24h】

Static Scheduling of Moldable Streaming Tasks With Task Fusion for Parallel Systems With DVFS

机译:具有DVFS的并行系统任务融合的可模塑流任务的静态调度

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of statically scheduling a task graph of moldable streaming tasks (i.e., the actor network) to a multicore or many-core CPU with discrete dynamic voltage and frequency scaling (DVFS). We employ an integer linear programming (ILP) approach that combines allocating cores to tasks, mapping tasks to core subsets, selecting a DVFS level for each task, and considering all options for task fusion as provided by a cost model, given data throughput and latency requirements and targeting low energy consumption. We also propose a partly decoupled approach that applies greedy prefusion before running an ILP-based scheduler considering the other three subproblems together. We use microbenchmarking on an ARM big.LITTLE architecture to quantify the advantage of task fusion in the above setting, and evaluate the use of task fusion in terms of energy savings, latency improvement, and scheduling time for three real-world applications. We confirm the scheduling results by running the applications with and without task fusions on the ARM big.LITTLE. Results indicate that streaming applications can profit from task fusion, as we achieve a significant reduction of energy consumption in most cases, while scheduling time is only moderately increased.
机译:我们考虑具有具有离散动态电压和频率缩放(DVFS)的多核或多核CPU的多核或多核CPU的模塑流媒体任务(即,Actor网络)的问题图。我们采用整数线性编程(ILP)方法,将核心分配给任务,将任务映射到核心子集合,为每个任务选择DVFS级别,并考虑到成本模型提供的任务融合的所有选项,给定数据吞吐量和延迟要求和瞄准低能耗。我们还提出了一种部分解耦的方法,在考虑其他三个子问题的基于ILP的调度程序之前,在运行基于ILP的调度程序之前,将贪婪的倒置应用。我们在ARM Big.Little架构上使用Microbenchmarking。在上面的设置中量化任务融合的优势,并评估任务融合在节能,延迟改进和三个现实应用程序的调度时间方面的使用。我们通过在ARM Big.little上运行和没有任务融合,通过运行应用程序来确认调度结果。结果表明,流媒体应用可以从任务融合中获利,因为在大多数情况下,我们在大多数情况下实现了能量消耗的显着降低,而调度时间仅适度增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号