首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >StereoEngine: An FPGA-Based Accelerator for Real-Time High-Quality Stereo Estimation With Binary Neural Network
【24h】

StereoEngine: An FPGA-Based Accelerator for Real-Time High-Quality Stereo Estimation With Binary Neural Network

机译:StereoEnengine:基于FPGA的加速器,用于使用二元神经网络的实时高质量立体声估算

获取原文
获取原文并翻译 | 示例

摘要

Stereo estimation is essential to many applications such as mobile autonomous robots, most of which ask for real-time response, high energy, and storage efficiency. Deep neural networks (DNNs) have shown to yield significant gains in improving accuracy. However, these DNN-based algorithms are challenging to be deployed on energy and resource-constrained devices due to the high computational complexities of DNNs. In this article, we present StereoEngine, a fully pipelined end-to-end stereo vision accelerator that computes accurate dense depth in a real-time and energy-efficient manner. An efficient stereo algorithm is developed and optimized for a high-quality hardware-friendly implementation, that leverages binary neural network (BNN) to learn discriminative binary descriptors to improve the disparity. The design of StereoEngine is a standalone DNN-based stereo vision system where all processing procedures are implemented on a hardware platform. The effectiveness of StereoEngine is evaluated by comprehensive experiments. Compared with software-based implementations on the high-end and embedded Nvidia GPUs, StereoEngine achieves up to 3x, 13x, and 50x speedups, as well as up to 211x, 58x, and 73x energy efficiency improvement, respectively. Furthermore, StereoEngine achieves leading accuracy when compared to state-of-the-art hardware implementations on the challenging KITTI dataset.
机译:立体声估计对于许多诸如移动自主机器人的应用至关重要,其中大部分是询问实时响应,高能量和存储效率。深度神经网络(DNN)显示出在提高准确性方面产生显着的增益。然而,由于DNN的高计算复杂性,这些基于DNN的算法是在能量和资源受限的设备上部署的具有挑战性。在本文中,我们呈现立体发动机,一个完全流水线端到端立体声视觉促进剂,以实时和节能的方式计算精确的密集深度。为高质量的硬件友好实现开发并优化了一种高效的立体声算法,其利用二元神经网络(BNN)来学习鉴别的二进制描述符以提高视差。 STEREOENENINE的设计是一个独立的DNN基立体视觉系统,在硬件平台上实现了所有处理程序。通过综合实验评估立体发炎的有效性。与高端和嵌入式NVIDIA GPU上的基于软件的实现相比,立体发动机达到3倍,13倍和50倍的加速,以及高达211倍,58倍和73倍的能效改善。此外,与具有挑战性的基蒂数据集上的最先进的硬件实现相比,立体能达到了领先的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号