首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Pruning Deep Reinforcement Learning for Dual User Experience and Storage Lifetime Improvement on Mobile Devices
【24h】

Pruning Deep Reinforcement Learning for Dual User Experience and Storage Lifetime Improvement on Mobile Devices

机译:在移动设备上修剪深层增强学习,对双用户体验和存储寿命改进

获取原文
获取原文并翻译 | 示例

摘要

Background segment cleaning in log-structured file system has a significant impact on mobile devices. A low triggering frequency of the cleaning activity cannot reclaim enough free space for subsequent I/O, thus incurring foreground segment cleaning and impacting the user experience. In contrast, a high triggering frequency could generate excessive block migrations (BMs) and impair the storage lifetime. Prior works address this issue either by performance-biased solutions or incurring excessive memory overhead. In this article, a pruned reinforcement learning-based approach, MOBC, is proposed. Through learning the behaviors of I/O workloads and the statuses of logical address space, MOBC adaptively reduces the number of BMs and the number of triggered foreground segment cleanings. In order to integrate MOBC to resource-constraint mobile devices, a structured pruning method is proposed to reduce the time and space cost. The experimental results show that the pruned MOBC can reduce the worst case latency by 32.5%-68.6% at the 99.9th percentile, and improve the storage endurance by 24.3% over existing approaches, with significantly reduced overheads.
机译:日志结构文件系统中的背景段清洁对移动设备产生了重大影响。清洁活动的低触发频率不能为后续I / O回收足够的自由空间,从而产生前景段清洁和影响用户体验。相反,高触发频率可以产生过多的块迁移(BMS)并损害存储寿命。先前的作品通过性能偏见的解决方案或产生过多的内存开销来解决此问题。在本文中,提出了一种修剪的加强基于学习的方法MOBC。通过学习I / O工作负载的行为以及逻辑地址空间的状态,MOBC自适应地减少了BMS的数量和触发的前景段清除的数量。为了将MOBC集成到资源约束移动设备,提出了一种结构化修剪方法来减少时间和空间成本。实验结果表明,修剪的MOBC可以在99.9百分位将最坏情况延迟减少32.5%-68.6%,并在现有方法中提高24.3%的储存耐力,具有显着降低的开销。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号