首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Improving Reliability of Soft Real-Time Embedded Systems on Integrated CPU and GPU Platforms
【24h】

Improving Reliability of Soft Real-Time Embedded Systems on Integrated CPU and GPU Platforms

机译:提高集成CPU和GPU平台上软实时嵌入式系统的可靠性

获取原文
获取原文并翻译 | 示例

摘要

Multiprocessor systems on a chip consisting of integrated CPUs and GPUs are suitable platforms for real-time embedded applications requiring massively parallel processing. For such applications, lifetime reliability due to permanent faults and soft-error reliability due to transient faults are major concerns. Detailed execution profiling has revealed that a CUDA task's CPU execution time significantly increases if the task executes on a different core than the operating system (OS). Based on this observation, an extended task model is introduced to consider the execution time dependencies among tasks and the OS. A hybrid framework is proposed to improve soft-error reliability while satisfying a lifetime reliability constraint for soft real-time systems executing on integrated CPU and GPU platforms. This framework: 1) reduces the total utilization of cores and improves soft-error reliability via off-line task mapping; 2) achieves a higher lifetime reliability through task migration at run time; and 3) improves soft-error reliability by dynamically scaling frequencies of CPU and GPU cores. The experimental results show that the proposed framework leads to a system that can execute without soft errors for at least 4 days (4 times) and 6 days (6 times) longer, on average, than existing approaches.
机译:由集成CPU和GPU组成的芯片上的多处理器系统是需要大规模并行处理的实时嵌入式应用的合适平台。对于此类应用,由于瞬态故障导致的永久性故障和软误差可靠性导致的寿命可靠性是主要问题。详细的执行分析显示,如果任务在不同的核心上执行而不是操作系统(OS),则CUDA任务的CPU执行时间显着增加。基于该观察,引入了扩展任务模型,以考虑任务和操作系统之间的执行时间依赖性。提出了一种混合框架,提高软误差可靠性,同时满足在集成CPU和GPU平台上执行的软实时系统的寿命可靠性约束。该框架:1)通过离线任务映射降低核心的总利用率,并通过离线任务映射提高软误差可靠性; 2)通过运行时的任务迁移实现更高的寿命可靠性; 3)通过动态缩放CPU和GPU核心频率来提高软错误可靠性。实验结果表明,所提出的框架导致一个系统,其在没有软误差的情况下至少4天(4次)和6天(6次),平均而不是现有方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号